B.Sc. Part—I Semester-II (Old) Examination
 MATHEMATICS
 (Vector Analysis \& Solid Geometry)

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Attempt it once only.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternative :
(1) Volumes of parallelepiped with $\bar{a}, \bar{b}, \bar{c}$ as edge vector is :
(a) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
(b) $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
(c) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}$
(d) $(\bar{a} \times \bar{b}) \times \bar{c}$
(2) The derivative of any constant vector function is:
(a) One
(b) Two
(c) Zero
(d) None of these
(3) The plane which passes through $p(\bar{r})$ and contains binormal and tangent is said to be :
(a) Osculating plane
(b) Rectifying plane
(c) Normal plane
(d) None of these
(4) For any space curve $\overline{\mathrm{t}}^{\prime} \overline{\mathrm{b}}^{\prime}=$ \qquad
(a) K
(b) τ
(c) $\mathrm{K} \tau$
(d) $-\mathrm{K} \tau$
(5) A vector $\overline{\mathrm{f}}$ is said to be solenoidal if :
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) $\operatorname{curl} \overline{\mathrm{f}}=0$
(c) $\operatorname{grad} \overline{\mathrm{f}}=0$
(d) $\nabla \cdot \nabla \overline{\mathrm{f}}=0$
(6) If curl $\overline{\mathrm{f}}=0$ then a vector $\overline{\mathrm{f}}$ is :
(a) Rotational
(b) Irrotational
(c) Solenoidal
(d) None
(7) A plane section of a sphere is :
(a) Circle
(b) Point
(c) Line
(d) Plane
(8) Any second degree equation in which co-efficient of x^{2}, y^{2}, z^{2} are equal and product terms xy, yz and zx are absent represents a :
(a) Cone
(b) Cylinder
(c) Sphere
(d) Plane
(9) Every homogeneous equation of second degree in x, y, and z represents a \qquad whose vertex is at origin.
(a) Sphere
(b) Cylinder
(c) Cone
(d) None
(10) A cone whose generator makes a constant angle with a fixed line through its vertex is called the :
(a) Right circular cylinder
(b) Right circular cone
(c) Cylinder
(d) None
$1 \times 10=10$

UNIT-I

2. (a) Prove that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}$.
(b) Show that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}}), \overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}}), \overline{\mathrm{c}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ are coplanar.
3. (p) Show that the necessary and sufficient condition for $\bar{f}(t)$ to have constant direction is $\overline{\mathrm{f}} \times \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}=0$.
(q) If $\overline{\mathrm{a}}=\mathrm{t} \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+2 \mathrm{t} \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=3 \overline{\mathrm{i}}+\mathrm{t} \overline{\mathrm{j}}-\overline{\mathrm{k}}$ evaluate $\int_{1}^{2} \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \mathrm{dt} . \quad 10$

UNIT-II

4. (a) State and prove Serret-Frenet formulae.
(b) Show that the tangent at any point on the curve whose equation are $x=3 u, y=3 u^{2}$, $\mathrm{z}=2 \mathrm{u}^{3}$ makes a constant angle with the line $\mathrm{y}=\mathrm{z}-\mathrm{x}=0$.
5. (p) Prove that for any curve

$$
\left[\overline{\mathfrak{t}}^{\prime}, \overline{\mathrm{t}}^{\prime \prime}, \overline{\mathrm{t}}^{\prime \prime \prime}\right]=\left[\overline{\mathrm{r}}^{\prime \prime}, \overline{\mathrm{r}}^{\prime \prime \prime}, \overline{\mathrm{r}}^{\prime \prime \prime \prime}\right]=\mathrm{K}^{3}\left(\mathrm{~K} \tau-\mathrm{K}^{\prime} \tau\right)=\mathrm{K}^{5}(\tau / \mathrm{K})^{\prime} .
$$

(q) Show that necessary and sufficient condition that a curve be a straight line is $\mathrm{K}=0$.
6. (a) Prove that $\overline{\mathrm{r}}^{\mathrm{n}} \overline{\mathrm{r}}$ is irrotational. Find the value of n when it is solenoidal.
(b) If $\overline{\mathrm{f}}=\mathrm{x}^{2} \mathrm{z} \overline{\mathrm{i}}-2 \mathrm{y}^{3} \mathrm{z}^{2} \overline{\mathrm{j}}+x y^{2} \mathrm{z} \overline{\mathrm{k}}$ find div $\overline{\mathrm{f}}$ and $\operatorname{curl} \overline{\mathrm{f}}$ at $(1,-1,1)$.
7. (p) Evaluate $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the square formed by the line $y= \pm 1$ and $x= \pm 1$.
(q) Find the work done in moving a particle once around a circle C in the xy plane of radius Z and centre $(0,0)$ and if force field is given by

$$
\begin{equation*}
\overline{\mathrm{f}}=3 x y \overline{\mathrm{i}}-\mathrm{y} \overline{\mathrm{j}}+2 \mathrm{zx} \overline{\mathrm{k}} \tag{10}
\end{equation*}
$$

UNIT-IV

8. (a) Find the equation of the sphere which passes through the point $(1,0,0),(0,1,0)$ and $(0,0,1)$ and radius as small as possible.
(b) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$.
9. (p) Find the equation of the two sphere which pass through the circle $x^{2}+y^{2}+z^{2}=5$, $x+2 y+3 z=3$ and touch $4 x+3 y-15=0$.
(q) Two sphere of radii r_{1} and r_{2} cut orthogonally prove that the radius of the common circle is $\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}+\mathrm{r}_{2}}}$.
10. (a) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generator touch the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) Find the equation of the cone whose vertex is origin and which passes through the curve of intersection of the plane $\ell x+m y+n z=p$ and the surface $a x^{2}+b y^{2}+c z^{2}=1$.
11. (p) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and the guiding curve is the ellipse $\mathrm{x}^{2}+2 \mathrm{y}^{2}=1, \mathrm{z}=3$.
(q) Find the equation of the right circular cylinder of radius 4 whose axis passes through the origin and makes equal angles with the co-ordinate axes.
