B.Sc. Part-II (Semester-III) (CBCS) Examination
 DSC-VI
 MATHEMATICS
 Partial Differential Equation

Time : Three Hours]
[Maximum Marks : 60
Note :- (1) Question No. 1 is compulsory. Solve it in ONE attempt only.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(i) $z=\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)\left(x^{n}+y^{n}\right)$ is homogeneous function of degree :
(a) $\frac{\mathrm{n}}{2}$
(b) $\mathrm{n}+\frac{1}{2}$
(c) $\frac{\mathrm{n}+1}{2}$
(d) n^{2}
(ii) If $z=\log \left(x^{2}+x y+y^{2}\right)$ then value of $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is :
(a) 1
(b) $\frac{2 x+y}{x^{2}+x y+y^{2}}$
(c) 2
(d) $\frac{x+2 y}{x^{2}+x y+y^{2}}$
(iii) The auxiliary equation for the PDE, $\mathrm{P}_{\mathrm{p}}+\mathrm{Q}_{\mathrm{q}}=\mathrm{R}$ is :
(a) $\frac{d x}{p}=\frac{d y}{q}=\frac{d z}{R}$
(b) $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$
(c) $\frac{\mathrm{dx}}{\mathrm{R}}=\frac{\mathrm{dy}}{\mathrm{P}}=\frac{\mathrm{dz}}{\mathrm{Q}}$
(d) None of these
(iv) The singular integral of $q^{2}=z^{2} p^{2}\left(1-p^{2}\right)$ is:
(a) $z=1$
(b) $\mathrm{z}=2$
(c) $\mathrm{z}=0$
(d) $\mathrm{z}=4$
(v) The non-linear partial differential equation $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are compatible iff :
(a) $\mathrm{J}_{\mathrm{xp}}+\mathrm{J}_{\mathrm{yq}}+\mathrm{pJ}_{\mathrm{zp}}+\mathrm{qJ}_{\mathrm{zq}}=0$
(b) $\mathrm{J}_{\mathrm{xp}}+\mathrm{J}_{\mathrm{yq}}=0$
(c) $\mathrm{J}_{\mathrm{zp}}=\mathrm{J}_{\mathrm{zq}}$
(d) None of these
(vi) The complete solution of $q=3 p^{2}$ is:
(a) $z=x^{2}+3 a^{2} y+b$
(b) $\mathrm{z}=\mathrm{ax}+\mathrm{a}^{2} \mathrm{y}+\mathrm{b}$
(c) $z=a^{2}+3 a^{2} y-b$
(d) $z=a x+3 a^{2} y+b$
(vii) The distance ρ between the curves $y=x$ and $y_{1}=x^{2}$ on $[0,2]$ is :
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) 2
(d) 4
(viii) The Euler's equation for a functional of the form $\int_{a}^{b} f(x, y) d x$ is :
(a) $\mathrm{F}_{\mathrm{y}^{\prime}}=\mathrm{C}_{1}$
(b) $\mathrm{F}_{\mathrm{y}}-\mathrm{y}^{\prime} \mathrm{F}_{\mathrm{y}^{\prime}}=\mathrm{C}_{1}$
(c) $\mathrm{F}_{\mathrm{y}}=\mathrm{C}_{1}$
(d) None of these
(ix) The partial differential equation, $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=5 \frac{\partial \mathrm{u}}{\partial \mathrm{x}}$ has a solution $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is :
(a) $\mathrm{C}_{5} \mathrm{e}^{\lambda\left(t+\frac{\mathrm{x}}{5}\right)}$
(b) $\mathrm{C}_{5} \mathrm{e}^{\lambda\left(\mathrm{t}-\frac{\mathrm{x}}{5}\right)}$
(c) $\mathrm{C}_{5} \mathrm{e}^{\lambda(\mathrm{t}+5 \mathrm{x})}$
(d) $\mathrm{C}_{5} \mathrm{e}^{\lambda\left(\mathrm{t}+\frac{\mathrm{t}}{5}\right)}$
(x) In general solution to the given partial differntial equation $u(x, t)=c_{5} e^{\lambda\left(t+\frac{x}{12}\right)}$ and $u(x, 0)=6 \mathrm{e}^{\frac{1}{6} x}$, then values of C_{5} and λ are :
(a) $\frac{1}{2}$ and 6
(b) 2 and $\frac{1}{2}$
(c) 6 and 2
(d) 6 and $\frac{1}{2}$

UNIT-I

2. (a) If $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a homogeneous function of degree ' n ' then prove that,
(i) $x \frac{\partial^{2} z}{\partial x^{2}}+y \frac{\partial^{2} z}{\partial x \partial y}=(n-1) \frac{\partial z}{\partial x}$
(ii) $x \frac{\partial^{2} z}{\partial x \partial y}+y \frac{\partial^{2} z}{\partial y^{2}}=(n-1) \frac{\partial z}{\partial y}$
(iii) $x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=n(n-1) z$

OR
(b) Let $z=\sin ^{-1}\left(\frac{x^{\frac{1}{4}}+y^{\frac{1}{4}}}{x^{\frac{1}{6}}+y^{\frac{1}{6}}}\right)$, prove that $x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{\tan z}{144}\left(\tan ^{2} z-11\right) \quad 6$
(c) Prove that a polynomial function is a homogeneous function of degree n if all of its terms of the same degree n.

OR

(d) If $z(x+y)=x^{2}+y^{2}$, show that $\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2}=4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)$.

UNIT-II

3. (a) Find the general integral of P.D.E. $\left(y^{3} x-2 x^{4}\right) p+\left(2 y^{4}-x^{3} y\right) q=9 z\left(x^{3}-y^{3}\right)$.

OR

(b) Find the complete integral of P.D.E. $z\left(p^{2}-q^{2}\right)=x-y$.
(c) Obtain the singular solution of P.D.E. $z^{2}\left(1+p^{2}+q^{2}\right)=k^{2}$.

OR

(d) Solve: $\mathrm{p}+3 \mathrm{q}=5 \mathrm{z}+\tan (\mathrm{y}-3 \mathrm{x})$.

UNIT-III

4. (a) Solve : $x y r+x^{2} s-y p=x^{3} e^{y}$, where $r=\frac{\partial p}{\partial x}$, $s=\frac{\partial p}{\partial y}$.

OR

(b) Solve: $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=\cos (2 x+y)$.
(c) Solve: $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=\tan (y+x)$.

OR

(d) Prove that the equation $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{p}, \mathrm{q})=0$ and $\mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{p}, \mathrm{q})=0$ are compatible if $\mathrm{J}_{\mathrm{xp}}+\mathrm{J}_{\mathrm{yq}}=0$.

UNIT-IV

5. (a) Define closedness of curves in the sense of $\mathrm{m}^{\text {th }}$ order of proximity.

Also show that the curves $y(x)=\frac{\sin x}{n}$, where n is sufficiently large and $y_{1}(x)=0$ on $[0, \pi]$ are closed in sense of proximity of any order. $1+5$

OR

(b) Find the shortest distance between two points A and B in terms of polar co-ordinates. 6
(c) For the functional $I[y]=\int_{0}^{1}\left(x^{3} y^{\prime 2}-y^{2}\right) d x$, put $y=x^{2}, \delta_{y}=k x$. Find $\Delta I[y(x)]$ for $k=2$.

OR

(d) Find the distance between the curves $y(x)=\mathrm{xe}^{-\mathrm{x}}$ and $\mathrm{y}_{1}(\mathrm{x})=0$ on [0, 2].

UNIT-V
6. (a) Solve partial differential equation $\frac{\partial u}{\partial t}=3 \frac{\partial u}{\partial x}$ and $u(x, 0)=10 \mathrm{e}^{\frac{1}{6} \mathrm{x}}$.

OR
(b) Solve partial differential equation, $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ with $x(x, 0)=6 \mathrm{e}^{-3 x}$ using method of separable variable.
(c) Formulate two separate ODE's for the one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ (where $u(x, t)$ represent temperature distribution at position x and time t), describes the diffusion of heat in solid medium over time.

OR

(d) Formulate two separate ODE's, for the one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ (where $\mathrm{u}(\mathrm{x}, \mathrm{t})$ represent displacement of the wave at position x and time t and c is wave speed) describes the propagation of waves in a medium.

