$1 \times 10 = 10$

B. Sc. Part-II (Semester-IV) Examination

MATHEMATICS

(Modern Algebra : Groups and Rings)

Paper-VII

[Maximum Marks: 60

Note : $-$ (1)	Question No. 1	is compulsory and	l attempt at once only.

- (2) Solve **one** question from each unit.
- 1. Choose the correct alternatives :

Time : Three Hours]

- (i) A non-empty subset H of the group G is a subgroup of G if and only if $a, b \in H \Rightarrow$
 - (a) $(ab)^{-1} \in H$ (b) $ab^{-1} \in H$
 - (c) $a^{-1}b^{-1} \in H$ (d) None of these
- (ii) The product of an even and odd permutation is :
 - (a) Odd (b) Even
 - (c) Both odd and even (d) None of these
- (iii) If G is a finite group and N is a normal subgroup of G, then O(G/N) is equal to :
 - (a) O(G).O(N) (b) O(G) + O(N)
 - (c) O(G)/O(N) (d) O(G) O(N)
- (iv) A group having only improper normal subgroup is called :
 - (a) A permutation group (b) A finite group
 - (c) A simple group (d) None of these
- (v) If ϕ be a homomorphism of group G onto G' with kernel K, then G' is :
 - (a) Isomorphic to G/K (b) Isomorphic to K/G
 - Isomorphic to G (d) One-one homomorphism
- (vi) The Kernel of a homomorphism $f: G \to G'$ is :
 - (a) A normal subgroup of G (b) A subgroup of G'
 - (c) A normal subgroup of G' (d)
- (vii) A commutative ring without zero divisor is :
 - (a) Boolean Ring (b) Field
 - (c) Division Ring (d) None of these

(c)

1

None of these

(a) Commutativering (b) Division ring (c) Boolean ring (d) Ring with unity (ix) A ring R has maximal ideals : (a) If R is finite (b) If R is finite with at least 2 elements (c) Only if R is finite (d) None of these (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Division ring (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when $G = \{x/x = a + b\sqrt{2}, a, b \in Q\}$. (b) If G is an abelian group, then prove that $: (ab)^n = a^n b^n \forall a, b \in G$ and \forall integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that $(ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$. (q) Let H be a subgroup of a group G. For a, b $\in G$, then prove that $Ha = Hb \Leftrightarrow a^{-1}H = b^{-1}H$. (r) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for $g \in G, gHg^{-1} = \{ghg^{-1}/h \in H\}$ prove that gHg^{-1} a subgroup of G. (q) If G is a proup N is a normal subgroup G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for $g \in G, gHg^{-1} = \{ghg^{-1}/h \in H\}$ prove that gHg^{-1} a subgroup of G. (c) Show that if G is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian.		(viii)	If in a ring R, $x^2 = x \forall x \in R$, then R	is:						
(c) Boolean ring (d) Ring with unity (ix) A ring R has maximal ideals: (a) If R is finite (b) If R is finite with at least 2 elements (c) Only if R is finite (d) None of these (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Division ring (c) A proper ring (d) None of these UNT — I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when $G = \{x/x = a + b\sqrt{2}, a, b \in Q\}$. (b) If G is an abelian group, then prove that $: (ab)^a = a^a b^a \forall a, b \in G$ and \forall integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that $(ab)^{-1}=b^{-1}a^{-1} \forall a, b \in G$. (q) Let H be a subgroup of a group G For a, $b \in G$, then prove that $Ha = Hb \Leftrightarrow a^{-1}H = b^{-1}H$ (r) Prove that the subgroup of a cyclic group is cyclic. UNIT — I 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G (b) Let H be a subgroup of G. If N(H) = {g $\in G / gHg^{-1} = H$ }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let Hbe a subgroup of a group G Let for $g \in G, gHg^{-1} = {ghg^{-1} / h \in H}$ prove that gHg^{-1} a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. (a) Prove that every cyclic group is abelian. (b) Let H be a subgroup of g up G Let for $g \in G, gHg^{-1} = \{ghg^{-1} / h \in H\}$ prove that gHg^{-1} (a) Show that every cyclic group is abelian. (b) Let H be a subgroup of G. (c) Show that if G is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (c) Show that every cyclic group is abelian.			(a) Commutative ring	(b)	Division ring					
 (ix) A ring R has maximal ideals: (a) If R is finite (b) If R is finite with at least 2 elements (c) Only if R is finite (d) None of these (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Divisionring (c) A proper ring (d) None of these 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G = {x/x = a + b √2, a, b ∈ Q}. (b) If G is an abelian group, then prove that: (ab)^a = a^ab^a ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G. For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹H (a) Prove that the subgroup of a group G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H}, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let Hbe a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (c) Show that if G is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian.			(c) Boolean ring	(d)	Ring with unity					
 (a) If R is finite (b) If R is finite with at least 2 clements (c) Only if R is finite (d) None of these (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Division ring (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G = {x/x = a + b √2, a, b ∈ Q }. (b) If G is an abelian group, then prove that: (ab)ⁿ = aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that the subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (c) Show that if G is abelian then the quotient group G/N is also abelian. (d) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (e) Show that if G is a normal subgroup of G, then show that G/N is also a group under th operation of multiplication of cosets. (f) Show that every cyclic group is abelian.		(ix)	A ring R has maximal ideals :							
 (c) Only if R is finite (d) None of these (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Divisionring (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G = {x/x = a + b √2, a, b ∈ Q }. (b) If G is an abelian group, then prove that : (ab)^a = a^ab^a ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G. For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G (c) Show that if G is abelian then the quotient group G/N is also abelian. (d) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (e) Show that if G is anormal subgroup of G, then show that G/N is also a group under th operation of multiplication of cosets. (r) Show that every cyclic group is abelian.			(a) If R is finite	(b)	If R is finite with at least 2 elements					
 (x) If R be commutative ring with unit element whose only ideals are {0} and R itself. Then R is (a) A field (b) Division ring (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G = {x/x = a + b √2, a, b ∈ Q}. (b) If G is an abelian group, then prove that : (ab)ⁿ = aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹ = b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹H = b⁻¹		C	(c) Only if R is finite	(d)	None of these					
 (a) Afield (b) Divisionring (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G = {x/x = a + b √2, a, b ∈ Q}. (b) If G is an abelian group, then prove that : (ab)ⁿ = aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that the subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (c) Show that if G is abelian then the quotient group G/N is also abelian. (d) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(x)	If R be commutative ring with unit ele	ement v	whose only ideals are $\{0\}$ and R itself. Then R	is :				
 (c) A proper ring (d) None of these UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G={x/x=a+b√2, a, b ∈ Q}. (b) If G is an abelian group, then prove that : (ab)ⁿ=aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that the subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹/h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under th operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 			(a) A field	(b)	Division ring					
UNIT—I 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when $G = \{x/x = a + b\sqrt{2}, a, b \in Q\}$. (b) If G is an abelian group, then prove that $: (ab)^n = a^n b^n \forall a, b \in G$ and \forall integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that $(ab)^{-1} = b^{-1} a^{-1} \forall a, b \in G$. (q) Let H be a subgroup of a group G For a, $b \in G$ then prove that $Ha = Hb \Leftrightarrow a^{-1}H = b^{-1}H$ (r) Prove that the subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for $g \in G$, $gHg^{-1} = \{ghg^{-1} / h \in H\}$ prove that gHg^{-1} a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. (c) Show that every cyclic group is abelian. (d) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian.			(c) A proper ring	(d)	None of these					
 2. (a) Prove that the system (G, t) is an abelian group with respect to 't' when G={x/x=a+b√2, a, b ∈ Q}. (b) If G is an abelian group, then prove that : (ab)ⁿ = aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G. For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹H (r) Prove that the subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H}, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under th operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 			τ	JNIT—	-I					
 G={x/x=a+b√2, a, b ∈ Q}. (b) If G is an abelian group, then prove that : (ab)ⁿ=aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H}, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 	2.	(a)	abelian group with respect to 't' wh	ere						
 (b) If G is an abelian group, then prove that : (ab)ⁿ = aⁿbⁿ ∀ a, b ∈ G and ∀ integers n. (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 			$G = \{x/x = a + b\sqrt{2}, a, b \in Q\}$							
 (c) Prove that the identity of a group G is unique. 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹H (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under th operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(b)	(b) If G is an abelian group, then prove that : $(ab)^n = a^n b^n \forall a, b \in G$ and \forall integers.							
 3. (p) Let G be a group, then prove that (ab)⁻¹=b⁻¹a⁻¹ ∀ a, b ∈ G. (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹F (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(c)	Prove that the identity of a group G is unique.							
 (q) Let H be a subgroup of a group G For a, b ∈ G, then prove that Ha = Hb ⇔ a⁻¹H = b⁻¹H → a⁻¹H = b⁻¹H (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 	3.	(p)	Let G be a group, then prove that $(ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$.							
 (r) Prove that every subgroup of a cyclic group is cyclic. UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H}, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(q) Let H be a subgroup of a group G. For a, $b \in G$, then prove that $Ha = Hb \Leftrightarrow a^{-1}H = b^{-1}H$.								
 UNIT—II 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹=H}, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(r)) Prove that every subgroup of a cyclic group is cyclic.							
 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of tw right cosets of N in G is again a right coset of N in G. (b) Let H be a subgroup of G. If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 	UNIT—II									
 (b) Let H be a subgroup of G .If N(H) = {g∈ G / gHg⁻¹ = H }, prove that N(H) is a subgroup of G. (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 	4.	(a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product right cosets of N in G is again a right coset of N in G.								
 (c) Show that if G is abelian then the quotient group G/N is also abelian. 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(b) Let H be a subgroup of G. If $N(H) = \{g \in G / gHg^{-1} = H\}$, prove that $N(H)$ is a so of G.								
 5. (p) Let H be a subgroup of a group G Let for g ∈ G, gHg⁻¹ = {ghg⁻¹ / h ∈ H} prove that gHg⁻¹ a subgroup of G. (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 		(c)	Show that if G is abelian then the que	otient g	roup G/N is also abelian.	2				
 (q) If G is a group N is a normal subgroup of G, then show that G/N is also a group under the operation of multiplication of cosets. (r) Show that every cyclic group is abelian. 	5.	(p)	Let H be a subgroup of a group G Let for $g \in G$, $gHg^{-1} = \{ghg^{-1} / h \in H\}$ prove that gH a subgroup of G.							
(r) Show that every cyclic group is abelian.		(q)	If G is a group N is a normal subgro operation of multiplication of coset	oup of (ts.	G, then show that G/N is also a group under	the 4				
		(r)	Show that every cyclic group is abeli	an.	311	2				

٢

UNIT-III

- 6. (a) If ϕ is a homomorphism of a group G into a group G' then prove that :
 - (i) $\phi(e) = e'$
 - (ii) $\phi(\mathbf{x}^{-1}) = (\phi(\mathbf{x}))^{-1} \forall \mathbf{x} \in G$ 4

where e and e' are the unit elements of G and G' respectively.

- (b) Let G be any group, g a fixed element in G. Define $\phi: G \to G$ by $\phi(x) = gxg^{-1}$. Prove that ϕ is an isomorphism of G onto G.
- (c) Show that any kernel is nonempty.
- 7. (p) If φ is a homomorphism of G into G' with kernel K, then prove that K is a normal subgroup of G.
 3
 - (q) Let G be the group of non-zero real numbers under addition and $G'=\{1,-1\}'$ where 1,1=1,

1.
$$(-1) = (-1)(1) = -1, (-1)(-1) = 1$$
. Define $\phi: G \to G'$

Such that

$$\phi(x) = \begin{cases} 1, & x \text{ is positive} \\ -1, & x \text{ is negative} \end{cases}$$

Show that ϕ is a homomorphism.

(r) Show that the mapping $f: C \to R$ defined by f(x+iy) = x is a homomorphism of the additive group of complex numbers onto the additive group of real numbers and find the kernel of f. 4

UNIT-IV

- 8. (a) If R is a ring in which $x^3 = x$, $\forall x \in R$, then prove that R is a commutative ring. 4
 - (b) Prove that the intersection of two subrings is a subring.
 - (c) Let the characteristics of the ring R be 2 and let $ab = ba \forall a, b \in R$. Then show that $(a + b)^2 = a^2 + b^2$ 3
- 9. (p) Define commutative ring. If R is a ring with zero element O, then for all a, b, c ∈ R, prove that :
 - (i) $a \cdot O = O \cdot a = O$
 - (ii) a(-b)=(-a). b=-(ab)
 - (iii) (-a)(-b) = ab
 - (iv) a.(b-c) = a.b-a.c
 - (q) Let R be a ring with a unit element 1, in which $(ab)^2 = a^2b^2 \forall a, b \in \mathbb{R}$. Prove that R must be commutative. 5

1 + 4

2

3

3

UNIT-V

- 10. (a) Prove that a homomorphism f of a ring R to a ring R' is an isomorphism iff $K_{eff} = \{0\}$. 4
 - (b) Let R be a commutative ring with unity. Prove that every maximal ideal of R is a prime ideal.
 - (c) If U is an ideal of a ring R with unity 1 and $1 \in U$, then prove that U = R. 3
- 11. (p) Let R and \overline{R} be rings with zero elements O, \overline{O} respectiblely and $f: R \to \overline{R}$ be a homomorphism. Then prove that : 5

311

- (i) $f(O) = \overline{O}$
- (ii) $f(-a) = -f(a) \forall a \in R$
- (iii) $f(a-b) = f(a) f(b) \forall a, b \in \mathbb{R}$.
- (q) If F is a field, then prove that its only ideals are $\{0\}$ and F itselt.
- (r) Define:
 - (i) Left ideal
 - (ii) Simple Ring.

317

3

2

2