B. Sc. Part-II (Semester-IV) Examination
 MATHEMATICS

(Modern Algebra : Groups and Rings)

Paper-VII

Time : Three Hours]
[Maximum Marks: 60
Note :- (1) Question No. 1 is compulsory and attempt at once only.
(2) Solve one question from each unit.

1. Choose the correct alternatives:
(i) A non-empty subset H of the group G is a subgroup of G if and only if $\mathrm{a}, \mathrm{b} \in \mathrm{H} \Rightarrow$
(a) $(\mathrm{ab})^{-1} \in \mathrm{H}$
(b) $\mathrm{ab}^{-1} \in \mathrm{H}$
(c) $\mathrm{a}^{-1} \mathrm{~b}^{-1} \in \mathrm{H}$
(d) None of these
(ii) The product of an even and odd permutation is :
(a) Odd
(b) Even
(c) Both odd and even
(d) None of these
(iii) If G is a finite group and N is a normal subgroup of G , then $\mathrm{O}(\mathrm{G} / \mathrm{N})$ is equal to :
(a) $\mathrm{O}(\mathrm{G}) \cdot \mathrm{O}(\mathrm{N})$
(b) $\mathrm{O}(\mathrm{G})+\mathrm{O}(\mathrm{N})$
(c) $\mathrm{O}(\mathrm{G}) / \mathrm{O}(\mathrm{N})$
(d) $\quad \mathrm{O}(\mathrm{G})-\mathrm{O}(\mathrm{N})$
(iv) A group having only improper normal subgroup is called :
(a) A permutation group
(b) A finite group
(c) A simple group
(d) None of these
(v) If ϕ be a homomorphism of group G onto G^{\prime} with kernel K , then G^{\prime} is:
(a) Isomorphic to G / K
(b) Isomorphic to K/G
(c) Isomorphic to G
(d) One-one homomorphism
(vi) The Kernel of a homomorphism $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is :
(a) A normal subgroup of G
(b) A subgroup of G^{\prime}
(c) A normal subgroup of G^{\prime}
(d) None of these
(vii) A commutative ring without zero divisor is:
(a) Boolean Ring
(b) Field
(c) DivisionRing
(d) None of these
(viii) If in a ring $\mathrm{R}, x^{2}=x \quad \forall x \in R$, then R is :
(a) Commutativering
(b) Divisionring
(c) Boolean ring
(d) Ring with unity
(ix) A ring R has maximal ideals:
(a) If R is finite
(b) If R is finite with at least 2 elements
(c) Only if R is finite
(d) None of these
(x) If R be commutative ring with unit element whose only ideals are $\{0\}$ and R itself. Then R is :
(a) A field
(b) Divisionring
(c) A proper ring
(d) None of these

UNIT-I

2. (a) Prove that the system (G, t) is an abelian group with respect to ' t ' where $G=\{x / x=a+b \sqrt{2}, a, b \in Q\}$. 4
(b) If G is an abelian group, then prove that: $(\mathrm{ab})^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$ and \forall integers n . 4
(c) Prove that the identity of a group G is unique. 2
3. (p) Let G be a group, then prove that $(\mathrm{ab})^{-1}=\mathrm{b}^{-1} \mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$. 3
(q) Let H be a subgroup of a group G. For $\mathrm{a}, \mathrm{b} \in \mathrm{G}$, then prove that $\mathrm{Ha}=\mathrm{Hb} \Leftrightarrow a^{-1} \mathrm{H}=\mathrm{b}^{-1} \mathrm{H}$.
(r) Prove that every subgroup of a cyclic group is cyclic.

UNIT-II

4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G .
(b) Let H be a subgroup of G .If $\mathrm{N}(\mathrm{H})=\left\{\mathrm{g} \in \mathrm{G} / \mathrm{gHg}^{-1}=\mathrm{H}\right\}$, prove that $\mathrm{N}(\mathrm{H})$ is a subgroup of G.

4
(c) Show that if G is abelian then the quotient group G / N is also abelian.
5. (p) Let H be a subgroup of a group G. Let for $\mathrm{g} \in \mathrm{G}, \mathrm{gHg}^{-1}=\left\{\mathrm{ghg}^{-1} / \mathrm{h} \in \mathrm{H}\right\}$ prove that gHg^{-1} is a subgroup of G.
(q) If G is a group N is a normal subgroup of G , then show that G / N is also a group under the operation of multiplication of cosets.
(r) Show that every cyclic group is abelian.

UNIT-III

6. (a) If ϕ is a homomorphism of a group G into a group G^{\prime} then prove that:
(i) $\quad \phi(e)=e^{\prime}$
(ii) $\quad \phi\left(\mathrm{x}^{-1}\right)=(\phi(\mathrm{x}))^{-1} \forall x \in G$
where e and e^{\prime} are the unit elements of G and G^{\prime} respectively.
(b) Let G be any group, g a fixed element in G . Define $\phi: \mathrm{G} \rightarrow \mathrm{G}$ by $\phi(x)=\operatorname{gxg}^{-1}$. Prove that ϕ is an isomorphism of G onto G .
(c) Show that any kernel is nonempty.
7. (p) If ϕ is a homomorphism of G into G^{\prime} with kernel K , then prove that K is a normal subgroup of G .
(q) Let G be the group of non-zero real numbers under addition and $\mathrm{G}^{\prime}=\{1,-1\}^{\prime}$ where $1.1=1$, 1. $(-1)=(-1)(1)=-1,(-1)(-1)=1$. Define $\phi: G \rightarrow G^{\prime}$

Such that

$$
\phi(x)=\left\{\begin{array}{cc}
1, & x \text { is positive } \\
-1, & x \text { is negative }
\end{array}\right\}
$$

Show that ϕ is a homomorphism.
(r) Show that the mapping $f: C \rightarrow R$ defined by $f(x+i y)=x$ is a homomorphism of the additive group of complex numbers onto the additive group of real numbers and find the kernel of f.

UNIT-IV

8. (a) If R is a ring in which $x^{3}=x, \forall x \in R$, then prove that R is a commutative ring.
(b) Prove that the intersection of two subrings is a subring.
(c) Let the characteristics of the ring R be 2 and let $\mathrm{ab}=\mathrm{ba} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$. Then show that $(a+b)^{2}=a^{2}+b^{2}$
9. (p) Define commutative ring. If R is a ring with zero element O, then for all $a, b, c \in R$, prove that:
(i) $\mathrm{a} \cdot \mathrm{O}=\mathrm{O} \cdot \mathrm{a}=\mathrm{O}$
(ii) $\mathrm{a}(-\mathrm{b})=(-\mathrm{a}) \cdot \mathrm{b}=-(\mathrm{ab})$
(iii) $(-a)(-b)=a b$
(iv) $\mathrm{a} \cdot(\mathrm{b}-\mathrm{c})=\mathrm{a} \cdot \mathrm{b}-\mathrm{a} . \mathrm{c}$
(q) Let R be a ring with a unit element 1 , in which $(a b)^{2}=a^{2} b^{2} \forall a, b \in R$. Prove that R must be commutative.

UNIT-V
10. (a) Prove that a homomorphism f of a ring R to a ring R ' is an isomorphism iff $\mathrm{K}_{\text {erf }}=\{0\}$. 4
(b) Let R be a commutative ring with unity. Prove that every maximal ideal of R is a prime ideal.
(c) If U is an ideal of a ring R with unity 1 and $1 \in U$, then prove that $U=R$. 3
11. (p) Let R and $\overline{\mathrm{R}}$ be rings with zero elements $\mathrm{O}, \overline{\mathrm{O}}$ respectibvely and $\mathrm{f}: \mathrm{R} \rightarrow \overline{\mathrm{R}}$ be a homomorphism. Then prove that:
(i) $\mathrm{f}(\mathrm{O})=\overline{\mathrm{O}}$
(ii) $\mathrm{f}(-\mathrm{a})=-\mathrm{f}(\mathrm{a}) \forall \mathrm{a} \in \mathrm{R}$
(iii) $\mathrm{f}(\mathrm{a}-\mathrm{b})=\mathrm{f}(\mathrm{a})-\mathrm{f}(\mathrm{b}) \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
(q) If F is a field, then prove that its only ideals are $\{0\}$ and F itselt.
(r) Define:
(i) Leftideal
(ii) Simple Ring.

