B.Sc. Part-III Semester-VI Examination
 MATHEMATICS
 (Special Theory of Relativity)
 Paper-XII

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt once.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternative :
(1) The transformations

$$
\mathrm{x}^{\prime}=\alpha(\mathrm{x}-\mathrm{vt}), \mathrm{y}^{\prime}=\mathrm{y}, \mathrm{z}^{\prime}=\mathrm{z}, \mathrm{t}^{\prime}=\alpha\left(\mathrm{t}-\frac{\mathrm{v}}{\mathrm{c}^{2}}\right) \mathrm{x}, \text { where } \alpha=\left(1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}\right)^{-1 / 2}
$$

are called as :
(a) Galilean transformations
(b) Laplace transformations
(c) Lorentz transformations
(d) Fourier transformations
(2) Lorentz transformations reduces to Galilean transformations if :
(a) $\mathrm{v}=\mathrm{c}$
(b) $\mathrm{v} \ll \mathrm{c}$
(c) $\mathrm{v} \gg \mathrm{c}$
(d) None of these
(3) The four dimensional vector $\mathrm{A}^{\mathrm{r}}=\left(\mathrm{A}^{1}, \mathrm{~A}^{2}, \mathrm{~A}^{3}, \mathrm{~A}^{4}\right)$ (or four vector) is space like if :
(a) $\mathrm{A}^{2}<0$
(b) $\mathrm{A}^{2}>0$
(c) $\mathrm{A}^{2}=0$
(d) None of these
(Here A is the length of the four vector A^{r}).
(4) The number of distinct components of a symmetric tensor of order 2 in an N -dimensional space are :
(a) N
(b) $\frac{\mathrm{N}(\mathrm{N}-1)}{2}$
(c) $\frac{\mathrm{N}(\mathrm{N}+1)}{2}$
(d) None of these
(5) If $\overline{\mathrm{A}}$ is a vector potential then the magnetic field $\overline{\mathrm{H}}$ is :
(a) $\overline{\mathrm{H}}=\operatorname{div} \cdot \overline{\mathrm{A}}$
(b) $\overline{\mathrm{H}}=\operatorname{curl} \overline{\mathrm{A}}$
(c) $\overline{\mathrm{H}}=\operatorname{div} .(\operatorname{curl} \overline{\mathrm{A}})$
(d) None of these
(6) The Electric and Magnetic field strengths $\overline{\mathrm{E}}$ and $\overline{\mathrm{H}}$ are invariant under:
(a) Galilean transformations
(b) Laplace transformations
(c) Lorentz transformations
(d) Guage transformations
(7) Four velocity of a particle is:
(a) A unit space-like vector
(b) A unit time-like vector
(c) A unit light-like vector
(d) None of these
(8) The interval $\mathrm{ds}^{2}=-\left(\mathrm{dx}^{1}\right)^{2}-\left(\mathrm{dx}^{2}\right)^{2}-\left(\mathrm{dx}^{3}\right)^{2}+\left(\mathrm{dx}^{4}\right)^{2}$ where $\mathrm{ds}^{2}>0$ is said to be :
(a) Time like
(b) Space like
(c) Light like
(d) None of these
(9) s and s^{\prime} are two inertial systems, where s^{\prime} is moving with uniform velocity v along xx^{\prime} axis the Lorentz contraction factor is :
(a) $\alpha=\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$
(b) $\alpha=-\sqrt{1-\frac{v^{2}}{c^{2}}}$
(c) $\alpha=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
(d) $\alpha=\frac{-1}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}$
(10) Kronecker delta is $\delta_{\mathrm{j}}^{\mathrm{i}}$ and defined as :
(a) $\delta_{\mathrm{j}}^{\mathrm{i}}= \begin{cases}1, & \text { for } \mathrm{i} \neq \mathrm{j} \\ 0, & \text { for } \mathrm{i}=\mathrm{j}\end{cases}$
(b) $\delta_{\mathrm{j}}^{\mathrm{i}}= \begin{cases}1, & \text { for } \mathrm{i}=\mathrm{j} \\ 0, & \text { for } \mathrm{i} \neq \mathrm{j}\end{cases}$
(c) $\delta_{j}^{i}=\left\{\begin{array}{cc}1, & \text { for } i=j \\ -1, & \text { for } i \neq j\end{array}\right.$
(d) $\delta_{\mathrm{j}}^{\mathrm{i}}=\left\{\begin{array}{cc}1, & \text { for } \mathrm{i} \neq \mathrm{j} \\ -1, & \text { for } \mathrm{i}=\mathrm{j}\end{array} \quad 1 \times 10=10\right.$

UNIT-I

2. (a) Prove that in an inertial frame a body, without influence of any forces, moves in a straight line with constant velocity.
(b) Show that $x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ is Lorentz invariant. 3
(c) Show that simultaneity is relative in special relativity.
3. (p) Show that Lorentz transformations form a group with respect to multiplication. 4
(q) Show that the circle $\mathrm{x}^{\prime 2}+\mathrm{y}^{\prime 2}=\mathrm{a}^{2}$ in s^{\prime} is measured to be an ellipse in s if s^{\prime} moves with uniform velocity relative to s.
(r) What are the postulates of special relativity?

UNIT-II

4. (a) Obtain the transformations for the velocity of a particle under special Lorentz transformations.
(b) If \bar{u} and \bar{u}^{\prime} be the velocities of a particle in two inertial systems s and s^{\prime} respectively then prove that :
$3 \sqrt{1-\frac{u^{2}}{c^{2}}}=\frac{\sqrt{1-\frac{u^{\prime 2}}{c^{2}}} \sqrt{1-\frac{v^{2}}{c^{2}}}}{\left(1+\frac{u_{x}^{\prime} v}{c^{2}}\right)}$,
where s^{\prime} is moving with velocity v relative to s along xx^{\prime} axis.
5. (p) What do you mean by :
(i) Time Dilation
(ii) Length Contraction?
(q) In a system s, a particle has a velocity 0.5 c in the xy-plane at an angle 30° with the x -axis. Determine the velocity of the particle in the system s' which is moving with the velocity 0.4 c relative to s .

UNIT-III

6. (a) Define four dimensional radius vector. If the length of four radius vector is denoted by s then show that s^{2} is invariant under Lorentz transformations. $1+3$
(b) Prove that:
(i) $\mathrm{T}^{\prime 11}=\alpha^{2}\left\{\mathrm{~T}^{11}-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{T}^{14}-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{T}^{41}+\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}} \mathrm{~T}^{44}\right\}$
(ii) $\mathrm{T}^{\prime 14}=\alpha^{2}\left\{-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{T}^{11}+\mathrm{T}^{14}+\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}} \mathrm{~T}^{41}-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{T}^{44}\right\}$
7. (p) Show that:

$$
\begin{equation*}
\mathrm{x}^{1}=-\mathrm{x}_{1}, \mathrm{x}^{2}=-\mathrm{x}_{2}, \mathrm{x}^{3}=-\mathrm{x}_{3}, \mathrm{x}^{4}=\mathrm{x}_{4} \text { and then } \mathrm{x}_{\mathrm{i}}=(-\overline{\mathrm{r}}, \mathrm{ct}) . \tag{4}
\end{equation*}
$$

(q) Prove that there exists an inertial system s' in which the two events occur at one and the same point if the interval between two events is time-like.
(r) Define :
(i) World point

(ii) World line.

UNIT-IV

8. (a) Define Four Velocity. Prove that the four velocity in component form is expressed as :
$31^{\mathcal{u}^{i}}=\left(\frac{\bar{u}}{\mathrm{c} \sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}, \frac{1}{\sqrt{1-\frac{\mathrm{u}^{2}}{\mathrm{c}^{2}}}}\right)$
where $\overline{\mathrm{u}}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)=$ velocity of the particle.
(b) Show that four velocity and four acceleration are mutually orthogonal.
(c) Prove that the square of the magnitude of the four-momentum vector p^{i} is $\mathrm{mo}^{2} \mathrm{c}^{2}$.
9. (p) Define Four Force. Prove that the four force in component form is expressed as :

$$
\mathrm{f}^{\mathrm{i}}=\left(\frac{\overline{\mathrm{f}}}{\mathrm{c} \sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}, \frac{\overline{\mathrm{f}} \cdot \overline{\mathrm{u}}}{\mathrm{c}^{2} \sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}\right)
$$

(q) Obtain Einstein's mass-energy equivalence relation.

UNIT-V

10. (a) Define Electric field $\overline{\mathrm{E}}$ and Magnetic field $\overline{\mathrm{H}}$ in terms of scalar potential ϕ and vector potential $\overline{\mathrm{A}}$. Also write them in component form. $1+1+3$
(b) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is

$$
\begin{equation*}
H=\left\{m_{0}^{2} c^{4}+c^{2}\left(P-\frac{e}{c} A\right)^{2}\right\}^{1 / 2}+e \phi \tag{5}
\end{equation*}
$$

11. (p) If $\overline{\mathrm{E}}$ and $\overline{\mathrm{H}}$ are electric and magnetic field strengths then prove that:
(i) $\overline{\mathrm{E}} \cdot \overline{\mathrm{H}}$ is invariant
(ii) $\mathrm{E}^{2}-\mathrm{H}^{2}$ is invariant under the Lorentz transformations.
(q) Define Current four vector. Show that $\mathrm{c}^{2} \rho^{2}-\mathrm{J}^{2}$ is invariant and its value is $\rho_{0}^{2} \mathrm{c}^{2}$.
