B.Sc. Part-III (Semester-VI) Examination

MATHEMATICS

(Special Theory of Relativity)

Paper—XII

Time	: T	hree	Hours			[Maximum	Marks: 60
Note	3	-(1)	Question No. 1 is compulsory. Atte	empt	only once.		
		(2)	Attempt ONE question from each	unit.		1	
	Cho	ose 1	the correct alternative :		01		
	(1)	Sum	of two tensors A_k^{ij} and B_k^{ij} is a n	nixed	tensor of order _		
		(a)	6	(b)	9		
		(c)	3	(d)	None of these		
	(2)	The	reference system is said to be an	inerti	al system if	<u></u> .	
		(a)	Newton's first law of motion valid				
		(b)	Newton's second law of motion va	alid			
		(c)	Newton's third law of motion valid	d			
		(d)	None of these				
((3)	The	order of outer product is the	of	f the order of the	tensors.	
		(a)	Sum	(b)	Different		
		(c)	Product	(d)	None of these		
	(4)	New	rton's fundamental equations of mot	ion a	are invariant under	·	
		(a)	Lorentz transformation	(b)	Galilean transform	mation	
		(c)	General Lorentz transformation	(d)	None of these		
	(5)	The	simultaneity in special relativity is	:			
1		(a)	Absolute	(b)	Constant		
		(c)	Relative	(d)	None of these	1	
	(6)	In r	elativistic addition law for velocities	whe	on $c \rightarrow \infty$. Then	<u> </u>	
		(a)	u' = v - u	(b)	u' = u - v		
		(c)	u' = u + v	(d)	None of these		

(7)	Four force $f^i = \underline{\hspace{1cm}}$.								
	(a) $\frac{dp^i}{ds}$	(b)	$\frac{du^{i}}{ds}$						
	(c) $\frac{dx^i}{ds}$	(d)	None of these						
(8)	The mass of a moving particle $m = \frac{1}{\sqrt{1}}$	$\frac{\mathrm{m_o}}{-\frac{\mathrm{u}^2}{\mathrm{c}^2}}$	is called						
	(a) Equivalent mass of a particle	(b)	Relativistic mass of a particle						
	(c) Rest mass of a particle	(d)	None of these						
(9)	If \overline{A} is a vector potential then the ma	igneti	c field is given by:						
	(a) $\overline{H} = \operatorname{div} \overline{A}$	(b)	$\overline{H} = \text{curl } \overline{A}$						
	(c) $\overline{H} = \Delta \phi \times A$	(d)	None of these						
(10)	The Maxwell tensor F_{ij} is	1							
	(a) $\frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i}$	(b)	$\frac{\partial A_{j}}{\partial x^{i}} - \frac{\partial A_{i}}{\partial x^{j}}$						
	(c) $\frac{\partial A_i}{\partial x^j} + \frac{\partial A_j}{\partial x^i}$	(d)	None of these	10×1=10					
	UNIT—I								
(a)	Show that the electromagnetic wave ed	quatio	on:						
	$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial f^2} = 0 \text{ is not invariant under GT.} $								
(b)	Show that simultaneity is relative in SR.								
(c)	Show that $x^2 + y^2 + z^2 - c^2t^2$ is Lorentz invariant.								
(a)	Prove that Newton's fundamental equations of motion are invariant under the Galilean								
(b)	transformation. Discuss the Geometrical interpretation of Lorentz transformation.								
(b)				4 ant 2					
(c)	Prove that the four dimensional volume	eier	nem axayazat is Lorentz invaria	ant. 2					

2.

3.

		UNIT—II	
4.	(a)	Obtain the expression a_x' , a_y' and a_z' for acceleration of a particle.	6
	(b)	Write short note on Time dilation.	4
5.	(a)	In the system S', let $u'_x = c \cos \theta$, $u'_y = c \sin \theta$. If S' moves with velocity v relate to the system S along the x-axis then show that $ux^2 + u^2y = c^2$ in S.	tive 4
	(b)	Obtain the transformation of Lorentz contraction factor.	6
	2	UNIT—III	
6.	(a)	Define four vectors. Show that the square of the length of a four vector is invarunder LT.	ian 5
	(b)	Define space like interval. Prove that there exist an inertial system S' in which the events occure at one and the same time if the interval between two events is space	
7.	(a)	Obtain the transformation of the components of a symmetrical four tensor $T^{\prime12}$, $T^{\prime23}$, under the Lorentz transformation.	T'1-
	(b)	Define:	
		(i) Four dimensional radius vector	
		(ii) World line	
		(iii) Light like interval	
		(iv) Contravariant tensor of order two.	4
		UNIT—IV	
8.	(a)	Deduce Einstein's mass energy equivalence relation.	6
	(b)	Show that the quantity $p^2 - \frac{E^2}{c^2}$ is an invariant whose numerical value is — $m_o^2 c$	· ·
0	(0)	Define four force	4
9.	(a)	Define four force.	
		Show that the four force can be expressed as:	
		\overline{F} \overline{F}	

 $\mathbf{f}^{i} = \left(\frac{\overline{\mathbf{F}}}{c\sqrt{1 - \frac{\mathbf{u}^{2}}{c^{2}}}}, \frac{\overline{\mathbf{F}}.\overline{\mathbf{u}}}{c^{2}\sqrt{1 - \frac{\mathbf{u}^{2}}{c^{2}}}}\right)$

where $\overline{F} = \frac{d\overline{p}}{dt}$.

(b) Derive the relativistic equation:

$$m = \alpha \left(1 + \frac{v u_x'}{c^2}\right) m'$$
 for mass,

where
$$\alpha = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$$
.

UNIT—V

10. (a) Show that the Lorentz force acting on a particle of charge 'e' is given by

$$\overline{F}_{L} = e \left(\overline{E} + \frac{1}{c} \overline{u} \times \overline{H} \right).$$

- (b) Describe the field in inertial frame S' if an electromagnetic field is purely electric in an inertial frame S.
- 11. (a) Obtain the transformation for electric and magnetic field strengths.
 - (b) Show that the quantities \overline{E} and \overline{H} remains invariant under Guage transformation. 4

317

317