B.Sc. Part-III (Semester-V) Examination
 MATHEMATICS
 (Mathematical Analysis)
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60

Note :-(1) Q. No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternatives :-
(1) Consider $\mathrm{P}=(1,2,4)$ be the partition of the interval $[1,4]$ then $\mu(\mathrm{P})$ is :
(a) 1
(b) 0
(c) 2
(d) 4
(2) A bounded function f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$ if its :
(a) Upper and lower sum are equal
(b) Upper and lower sum are not equal
(c) $\mathrm{L}(\mathrm{P}, \mathrm{f})=-\mathrm{U}(\mathrm{P}, \mathrm{f})$
(d) None
(3) The value of $\mathrm{B}(3,1 / 2)$ is :
(a) $\frac{15}{16}$
(b) $\frac{16}{15}$
(c) $\frac{11}{15}$
(d) $\frac{15}{11}$
(4) The value of Π is :
(a) 0
(b) 1
(c) -1
(d) n
(5) $\mathrm{C}-\mathrm{R}$ equations of an analytic function $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ are :
(a) $u_{x}=v_{y}, u_{y}=v_{x}$
(b) $u_{x}=v_{x}, u_{y}=v_{y}$
(c) $u_{x}=v_{y}, u_{y}=-v_{x}$
(d) $u_{x}=-v_{y}, u_{y}=v_{x}$
(6) A function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is harmonic in D if :
(a) $\mathrm{F}_{\mathrm{xx}}+\mathrm{F}_{\mathrm{yy}}=0$
(b) $\mathrm{F}_{\mathrm{xx}}-\mathrm{F}_{\mathrm{yy}}=0$
(c) $\mathrm{F}_{\mathrm{xy}}+\mathrm{F}_{\mathrm{yx}}=0$
(d) None
(7) The fixed points of the bilinear transformation $w=\frac{(2+i) z-2}{i+z}$ are :
(a) $\pm \mathrm{i}$
(b) $1 \pm \mathrm{i}$
(c) $0,-1$
(d) 0,1
(8) The normal form of a bilinear transformation having only one finite fixed point α is :
(a) $\frac{1}{w-\alpha}=\frac{1}{z-\alpha}+k$
(b) $\frac{1}{w+\alpha}=\frac{1}{z+\alpha}+k$
(c) $\frac{1}{\mathrm{w}-\alpha}=\frac{1}{\mathrm{z}-\alpha}$
(d) $\frac{1}{w+\alpha}=\frac{1}{z+\alpha}$
(9) An arbitrary intersection of closed set is :
(a) Closed
(b) Open
(c) Neither closed nor open
(d) None
(10) If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous mapping and X is compact then :
(a) $f(X)$ is connected
(b) $f(X)=\phi$
(c) $\mathrm{F}(\mathrm{X}) \neq \phi$
(d) $f(X)$ is compact
$10 \times 1=10$

UNIT-I

2. (a) If $f \in R[a, b]$ then prove that $F:[a, b] \rightarrow R$ defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is continuous on $[a, b]$ and if f is continuous at $x_{0} \in[a, b]$ then prove that F is differentiable at x_{0} with $\mathrm{F}^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{f}\left(\mathrm{x}_{0}\right)$.
(b) Prove that $\int_{1}^{-1} \cos ^{8} x d x<0$.
3. (p) Prove that every continuous function is integrable.
(q) Let the function f be defined as

$$
f(x)=\left\{\begin{array}{rc}
1 & , \\
-1, & x \text { is rational } \\
-1 & x \text { irrational }
\end{array}\right.
$$

show that f is not R -integrable over $[0,1]$ but $|\mathrm{f}| \in \mathrm{R}[0,1]$.

UNIT-II

4. (a) Prove that $\beta(m, n)=\frac{\sqrt{m} \sqrt{n}}{\sqrt{m+n}}$.
(b) Evaluate $\int_{0}^{1} x^{3}(1-x)^{3} d x$.
(c) Prove that $\lceil(1 / 2)=\sqrt{\pi}$.
5. (p) Prove that $\int_{a+}^{b} \frac{d x}{(x-a)^{p}}$ converges if $p<1$ and diverges if $p \geq 1$.
(q) Prove that $\int_{2}^{\infty} \frac{x^{2} d x}{\sqrt{x^{7}+1}}<\infty$.
(r) Test the convergence of $\int_{1}^{\infty} \frac{\log x}{x+a} d x$.
6. (a) Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{|\mathrm{xy}|}$ is not analytic at the origin although $\mathrm{C}-\mathrm{R}$ equations are satisfied at the point.
(b) Show that the function given by $u=2 x(1-y)$ is harmonic find v such that $u+i v$ is analytic also find $f(z)$ in terms of z.
7. (p) If $f(z)$ and $f(\bar{z})$ are analytic functions then prove that $f(z)$ is constant.
(q) Prove that in polar form C-R equations can be written as :

$$
\begin{equation*}
\frac{\partial \mathrm{u}}{\partial \gamma}=\frac{1}{\gamma} \frac{\partial \mathrm{v}}{\partial \theta} \text { and } \frac{\partial \mathrm{v}}{\partial \gamma}=-\frac{1}{\gamma} \frac{\partial \mathrm{u}}{\partial \theta} . \tag{5}
\end{equation*}
$$

UNIT—IV

8. (a) Consider the transformation $w=\mathrm{ze}^{\mathrm{i} \frac{\pi}{4}}$. Determine the region in w-plane corresponding to the triangular region bounded by the lines $x=0, y=0$ and $x+y=1$ in the z-plane.
(b) Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-1$ into the points $\mathrm{w}=\mathrm{i}, 0,-\mathrm{i}$.
9. (p) Prove that every bilinear transformation with two finite fixed points α, β is of the form $\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}$ where k is constant.
(q) Find the fixed points of the bilinear transformation $w=\frac{z}{2-z}$. Find its normal form. Show that it is hyperbolic.

UNIT-V

10. (a) Let the mapping $\mathrm{d}: \mathrm{C}[0,1] \times \mathrm{C}[0,1] \rightarrow \mathrm{R}$ be defined by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Show that d is a metric on $\mathrm{C}[0,1]$.
(b) Prove that every neighbourhood is an open set.
11. (p) Let X be a nonempty set and let d be a real function of order pairs of elements of X which satisfies the following condition

$$
d(x, y)=0 \Leftrightarrow x=y \text { and } d(x, y) \leq d(x, z)+d(y, z)
$$

Show that d is a metric on X .
(q) Let (X, d) be a metric space and $A \subseteq X$. Prove that A is closed iff A contains its boundary.

