B.Sc. Part—III Semester—V Examination MATHEMATICS (Mathematical Analysis) Paper—IX

Time : Three Hours]		[Maximum Marks : 60	
Note :—(1) Question No. 1 is compulsory. Attempt once.			
$\mathcal{O}(2)$ Attempt ONE question from each Unit.			
1. Choose the correct alternative :			
(1)	If f, g are bounded functions on [a, b] L(P, -f) is :	and P is any partition of [a, b] then	
	(a) L(P, f)	(b) U(P, f)	
	(c) $-U(P, f)$	(d) $-L(P, f)$	
(2)	(2) If P = (1, 3, 4, 5, 6) be the partition of [1, 6] with bounds $m_1 = 1$, $m_2 = 2$, $m_3 = 3$, $m_4 = 4$ then the value of L(P, f) is :		
	(a) 10	(b) 11	
	(c) 12	(d) 16	
(3)	The value of $1/2$ is : 3		
	(a) 1	(b) <u>1/2</u>	
	(c) π	(d) $\sqrt{\pi}$	
(4)	The value of $B(4, 3)$ is :		
	(a) $\frac{1}{15}$	(b) $\frac{1}{45}$	
	(c) $\frac{1}{60}$	(d) 1	
(5) Let $f(z) = u + iv$ be analytic and $z = re^{i\theta}$ then C – R equations are :			
	(a) $u_r = v_{\theta}, u_{\theta} = -v_r$	(b) $u_r = \frac{1}{r}v_{\theta}, v_r = -\frac{1}{r}u_{\theta}$	
	(c) $u_r = rv_{\theta}, u_{\theta} = -\frac{1}{r}v_r$ If (z) is analytic function with constant mod	(d) $u_r = v_{\theta}, u_{\theta} = v_r$	
(6)			
	(a) Unbounded	(b) Zero	
	(c) Constant	(d) None	

1

(7) The fixed points of the bilinear transformation $w = \frac{z-1}{z+1}$ are :

- (a) 1, -1 (b) i, -i
- (c) 0, 1 (d) 1, 2

(8) The normal form of bilinear transformation having two finite fixed points p, q is :

(a)
$$\frac{w-p}{w-q} = k\frac{z-p}{z-q}$$

(b) $\frac{w+p}{w+q} = k\frac{z+p}{z+q}$
(c) $\frac{w-p}{w+q} = k\frac{z-p}{z-q}$
(d) $\frac{w-p}{w-q} = k\frac{z+p}{z+q}$
(e) Any finite collection of open set is :
(a) Closed
(b) Open
(c) Semi open
(d) None

(10) Let A be a subset of metric space X if A is closed then :

(a) A^c is closed(b) A^c is open(c) $A^c = \phi$ (d) $A^c \neq \phi$ $1 \times 10 = 10$

UNIT—I

- 2. (a) Prove that a bounded function f defined on [a, b] is integrable on [a, b] iff for each $\epsilon > 0$ there exist a partition P of [a, b] such that U(P, f) L(P, f) < ϵ . 5
 - (b) If f is continuous on [a, b] and |f(x)| ≤ k for all x ∈ [a, b] where k is constant, then prove that :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le k(b-a)$$
5

3. (p) Prove that if f be a bounded and integrable function on [a, b] with m, M as infimum, supremum respectively then there exist a number μ between m and M such that :

$$\int_{a}^{b} f(x) dx = \mu(b-a)$$
5

(q) Prove that
$$\frac{2}{17} < \int_{-1}^{2} \frac{x}{1+x^4} dx < \frac{1}{2}$$
. 5

UNIT—II

4. (a) Let
$$0 \le f(x) \le g(x)$$
 and $f(x)$, $g(x) \in c$, $a < x < \infty$, then prove the following :

(i)
$$\int_{a}^{\infty} g(x) dx < \infty \Rightarrow \int_{a}^{\infty} f(x) dx < \infty$$

(ii) $\int_{a}^{\infty} f(x) dx = \infty \Rightarrow \int_{a}^{\infty} g(x) dx = \infty$ 4

(b) Test the convergence or divergence of $\int_{2}^{\infty} \frac{dx}{\sqrt{x^2 - 1}}$. 3

(c) Test the convergence of
$$\int_{1}^{\infty} \frac{e^{-x}}{x} dx$$
. 3

5. (p) Prove that $\int_{a}^{\infty} \frac{dx}{x^{p}}$ converges if P > 1 and diverges if P ≤ 1 and a > 0. 4

(q) Prove that
$$B(m, n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
. 3

(r) Evaluate
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x}(1+x)}$$
. 3

UNIT—III

- 6. (a) A necessary condition that f(z) = u(x, y) + iv(x, y) be analytic in a region D is that $u_x = v_y$ and $u_y = -v_x$ in D.
 - (b) Show that $f(z) = \log z$ is analytic and find its derivative. 5
- 7. (p) If f(z) is an analytic function then prove that :

$$\left\{\frac{\partial}{\partial x}|f(z)|\right\}^{2} + \left\{\frac{\partial}{\partial y}|f(z)|\right\}^{2} = |f'(z)|^{2}$$
5

(q) Prove that the function sin z is analytic and find its derivative. 5

UNIT-IV

8. (a) Prove that the cross-ratio remains invariant under a bilinear transformation. 5

(b) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ into a straight

line
$$4u + 3 = 0$$
.

9. (p) Under the transformation
$$w = \frac{1}{z}$$
 find the image of the circle $|z - 2i| = 2$. 5

(q) Find the bilinear transformation which maps the points z = 1, i, -i into the points $w = 0, 1, \infty$.

UNIT-V

10. (a) Let (X, d) be a metric space and x, y, x',
$$y' \in X$$
. Show that :
 $|d(x, y) - d(x', y')| \le d(x, x') + d(y, y')$ 5

- (b) If P is a limit point of a set A, then prove that every neighbourhood of P contains infinitely many points of A. 5
- 11. (p) Define Cauchy sequence and prove that every convergent sequence in a metric space is a Cauchy sequence. 5
 - (q) Let X be a metric space. If $\{x_n\}$, $\{y_n\}$ are sequence in X such that $x_n \to x$, $y_n \to y$ then show that $d(x_n, y_n) \to d(x, y)$. 5