B.Sc. Part-III Semester-V Examination
 MATHEMATICS
 (Mathematical Analysis)
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60
Note :(1) Question No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternative :
(1) If f, g are bounded functions on $[a, b]$ and P is any partition of $[a, b]$ then $\mathrm{L}(\mathrm{P},-\mathrm{f})$ is :
(a) $\mathrm{L}(\mathrm{P}, \mathrm{f})$
(b) $U(P, f)$
(c) $-\mathrm{U}(\mathrm{P}, \mathrm{f})$
(d) $-\mathrm{L}(\mathrm{P}, \mathrm{f})$
(2) If $\mathrm{P}=(1,3,4,5,6)$ be the partition of $[1,6]$ with bounds $\mathrm{m}_{1}=1, \mathrm{~m}_{2}=2, \mathrm{~m}_{3}=3$, $\mathrm{m}_{4}=4$ then the value of $\mathrm{L}(\mathrm{P}, \mathrm{f})$ is :
(a) 10
(b) 11
(c) 12
(d) 16
(3) The value of $\sqrt{1 / 2}$ is :
(a) 1
(b) $1 / 2$
(c) π
(d) $\sqrt{\pi}$
(4) The value of $\mathrm{B}(4,3)$ is :
(a) $\frac{1}{15}$
(b) $\frac{1}{45}$
(c) $\frac{1}{60}$
(d) 1
(5) Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ be analytic and $\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$ then $\mathrm{C}-\mathrm{R}$ equations are :
(a) $u_{r}=v_{\theta}, \quad u_{\theta}=-v_{r}$
(b) $\mathrm{u}_{\mathrm{r}}=\frac{1}{\mathrm{r}} \mathrm{v}_{\theta}, \mathrm{v}_{\mathrm{r}}=-\frac{1}{\mathrm{r}} \mathrm{u}_{\theta}$
(c) $\mathrm{u}_{\mathrm{r}}=\mathrm{rv}_{\theta}, \mathrm{u}_{\theta}=-\frac{1}{\mathrm{r}} \mathrm{v}_{\mathrm{r}}$
(d) $u_{r}=v_{\theta}, u_{\theta}=v_{r}$
(6) If (z) is analytic function with constant modulus then $f(z)$ is :
(a) Unbounded
(b) Zero
(c) Constant
(d) None
(7) The fixed points of the bilinear transformation $w=\frac{z-1}{z+1}$ are :
(a) $1,-1$
(b) $\mathrm{i},-\mathrm{i}$
(c) 0,1
(d) 1,2
(8) The normal form of bilinear transformation having two finite fixed points p, q is :
(a) $\frac{w-p}{w-q}=k \frac{z-p}{z-q}$
(b) $\frac{w+p}{w+q}=k \frac{z+p}{z+q}$
(c) $\frac{w-p}{w+q}=k \frac{z-p}{z-q}$
(d) $\frac{w-p}{w-q}=k \frac{z+p}{z+q}$
(9) Any finite collection of open set is :
(a) Closed
(b) Open
(c) Semi open
(d) None
(10) Let A be a subset of metric space X if A is closed then :
(a) A^{C} is closed
(b) A^{C} is open
(c) $\mathrm{A}^{\mathrm{C}}=\phi$
(d) $\mathrm{A}^{\mathrm{C}} \neq \phi$
$1 \times 10=10$

UNIT-I

2. (a) Prove that a bounded function f defined on [a, b] is integrable on [a, b] iff for each $\in>0$ there exist a partition P of $[a, b]$ such that $U(P, f)-L(P, f)<\in$.
(b) If f is continuous on $[\mathrm{a}, \mathrm{b}]$ and $|\mathrm{f}(\mathrm{x})| \leq \mathrm{k}$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ where k is constant, then prove that :

$$
\left|\int_{a}^{b} f(x) d x\right| \leq k(b-a)
$$

3. (p) Prove that if f be a bounded and integrable function on [a, b] with m, M as infimum, supremum respectively then there exist a number μ between m and M such that :

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\mu(b-a) \tag{5}
\end{equation*}
$$

(q) Prove that $\frac{2}{17}<\int_{-1}^{2} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}<\frac{1}{2}$.

UNIT-II

4. (a) Let $0 \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ and $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in \mathrm{c}, \mathrm{a}<\mathrm{x}<\infty$, then prove the following :
(i) $\int_{a}^{\infty} g(x) d x<\infty \Rightarrow \int_{a}^{\infty} f(x) d x<\infty$
(ii) $\int_{a}^{\infty} f(x) d x=\infty \Rightarrow \int_{a}^{\infty} g(x) d x=\infty$
(b) Test the convergence or divergence of $\int_{2}^{\infty} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-1}}$.
(c) Test the convergence of $\int_{1}^{\infty} \frac{e^{-x}}{x} d x$.
5. (p) Prove that $\int_{a}^{\infty} \frac{d x}{x^{p}}$ converges if $P>1$ and diverges if $P \leq 1$ and $a>0$.
(q) Prove that $B(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$.
(r) Evaluate $\int_{0}^{\infty} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}(1+\mathrm{x})}$.

UNIT-III

6. (a) A necessary condition that $f(z)=u(x, y)+i v(x, y)$ be analytic in a region D is that $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ in D.
(b) Show that $\mathrm{f}(\mathrm{z})=\log \mathrm{z}$ is analytic and find its derivative.
7. (p) If $f(z)$ is an analytic function then prove that :

$$
\left\{\frac{\partial}{\partial x}|f(\mathrm{z})|\right\}^{2}+\left\{\frac{\partial}{\partial \mathrm{y}}|\mathrm{f}(\mathrm{z})|\right\}^{2}=\left|\mathrm{f}^{\prime}(\mathrm{z})\right|^{2}
$$

(q) Prove that the function $\sin \mathrm{z}$ is analytic and find its derivative.

UNIT—IV

8. (a) Prove that the cross-ratio remains invariant under a bilinear transformation.
(b) Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}=0$ into a straight line $4 u+3=0$.
9. (p) Under the transformation $w=\frac{1}{z}$ find the image of the circle $|z-2 i|=2$.
(q) Find the bilinear transformation which maps the points $\mathrm{z}=1$, $\mathrm{i},-\mathrm{i}$ into the points $\mathrm{w}=0,1, \infty$.
10. (a) Let (X, d) be a metric space and $x, y, x^{\prime}, y^{\prime} \in X$. Show that :

$$
\begin{equation*}
\left|\mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right| \leq \mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{y}^{\prime}\right) \tag{5}
\end{equation*}
$$

(b) If P is a limit point of a set A , then prove that every neighbourhood of P contains infinitely many points of A.
11. (p) Define Cauchy sequence and prove that every convergent sequence in a metric space is a Cauchy sequence.
(q) Let X be a metric space. If $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are sequence in X such that $x_{n} \rightarrow x, y_{n} \rightarrow y$ then show that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y})$.

