B.Sc. Part–II (Semester–III) Examination MATHEMATICS (Elementary Number Theory) Paper—VI

Time : 7	Three Hours]	[Maximum Marks	: 60
N.B. :— (1) Q. No. 1 is compulsory ; attempt it only once.			
O(2) Attempt ONE question from each unit.			
1. Choose correct alternatives :			
(1)	If $a bc$ and $(a, b) = 1$ then	s'	
	(a) a b	(b) a c	
	(c) c a	(d) b a	
(2) A necessary and sufficient condition for $[a, b] = ab$ is :			
	(a) $[a, b] = 1$	(b) $ab = 1$	
	(c) $(a, b) = 1$	(d) None of these	
(3)	The conjecture 'Every odd integer is the	e sum of at most three primes' is given	by :
	(a) Euler	(b) Goldbach	
	(c) Eratosthenes	(d) None of these	
(4)	If p_n is the n^h prime number then		
	(a) $p_n \leq 2^{2^n}$	(b) $p_n \le 2^{n-1}$	
	(c) $p_n \le 2^{2^{n-1}}$	(d) $p_n \leq 2$	
(5)	The set {0, 1, 2, 3} is complete system	n of residue modulo :	
	(a) 3	(b) 4	
	(c) 5	(d) 2	
(6)	The function f is multiplicative if		
	(a) $f(mn) = f(m) + f(n)$	(b) $f(mn) = f(m) \cdot f(n)$	
	(c) $f(mn) = f(m) - f(n)$	(d) None of these	
(7)	The statement $a \equiv b \pmod{m}$ is equivalent	lent to	
	(a) $b \equiv a \pmod{m}$	(b) $(a - b) \equiv 0 \pmod{m}$	
	(c) Both (a) and (b) are true	(d) Both (a) and (b) are false	

(8) If n = 18 then the value of $\tau(18)$ and $\sigma(18)$ are :

- (a) 6 and 39 (b) 6 and 40
- (c) 39 and 40 (d) 6 and 7

(9) If P is prime divisor of Fermat number $F_n = 2^{2^n} + 1$ then $O_p(2) =$ _____

(a)
$$2^{n}$$
 (b) 2^{n-1}
(c) 2^{n+1} (d) $2^{2^{n}}$

- (10) The order of 2 modulo 7 is :
 - (a) 3 (b) 2 (d) 1

UNIT—I

- 2. (a) Let a and b be integers, not both zero. Then prove that there exist integers x and y such that (a, b) = xa + yb. 5
 - (b) If a, b ε I, b \neq 0 and a = bq + r, 0 \leq r < b then prove that (a, b) = (b, r). 3
 - (c) Define :
 - (i) Relatively prime
 - (ii) Greatest Common Divisor
- 3. (p) Let a, b, c be positive integers. Then prove that

$$[a, b, c] = \frac{abc}{(ab, bc, ca)}.$$

- (q) If (a, b) = 1 then prove that (ac, b) = (c, b).
- (r) Find the gcd of 275 and -200 and express it in the form xa + yb. 4

UNIT—II

4. (a) If m and n are distinct non-negative integers then prove that $(F_m, F_n) = 1$. 5

(b) Prove that there are infinitely many number primes of the form 4n + 3, where n is a positive integer. 5

 $10 \times 1 = 10$

5. (p) Prove that the Fermat number F5 is divisible by 641 and hence composite.

(q) Prove that every positive integer greater than one has at least one prime divisor. 5

UNIT-III

6. (a) Let $a_1, a_2, b_1, b_2 \in I$ such that $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$ then prove that : (i) $(a_1 \pm a_2) \equiv (b_1 \pm b_2) \pmod{m}$

(ii)
$$a_1 a_2 \equiv b_1 b_2 \pmod{m}$$
 4

(b) If $a \equiv b \pmod{m}$ then prove that $a^n \equiv b^n \pmod{m}$.

- (c) Solve the congruence using inverse of a modulo m, $3x \equiv 1 \pmod{125}$. 3
- 7. (p) Solve the system of three congruences $x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{3}$, $x \equiv 5 \pmod{7}$. 4

(q) Prove that
$$ca \equiv cb \pmod{m} \iff a \equiv b \binom{mod \frac{m}{d}}{d}$$
, where $d = (c, m)$. 3

(r) Find the remainder of 43^{289} is divided by 7. 3

UNIT-IV

8. (a) Let $n = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_m^{a_m}$ be the prime factorisation of the position integer n. Then prove that

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(\frac{1 - 1}{p_m} \right).$$
3

(b) If F is multiplicative function and $F(n) = \sum_{d|n} f(d)$, then prove that f is also multiplicative.

(c) Solve the linear congruence $3x \equiv 5 \pmod{16}$ by using Euler's theorem. 4

9. (p) Show that the sum of $\phi(n)$ positive integers less than n (> 1) and relatively prime to n is $\frac{n}{2}\phi(n)$.

(q) Let the positive integer n have prime factorisation

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_m^{a_m}$$

Then prove that $\tau(n) = (a_1 + 1) (a_2 + 1) \dots (a_m + 1) = \prod_{i=1}^m (a_i + 1)$ and
$$\sigma(n) = \frac{p_1^{a_1+1} - 1}{p_1 - 1} \cdot \frac{p_2^{a_2+1} - 1}{p_2 - 1} \dots \dots \frac{p_m^{a_m+1} - 1}{p_m - 1} = \prod_{i=1}^m \frac{p_i^{a_i+1} - 1}{p_i - 1}.$$

LT-28401

3

(r) For each positive integer $n \ge 1$, prove

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & , & n = 1 \\ 0 & , & n > 1 \end{cases}$$

UNIT-V

- 10. (a) Let p be prime number and d|(p-1). Then prove that the congruence $x^d 1 \equiv 0 \pmod{p}$ has exactly d solutions. 5
 - (b) Find all primitive roots of p = 17. 5
- 11. (p) If $O_m(a) = n$ then prove that $O_m(a^k) = \frac{n}{(n, k)}$ where k is a positive integer. 5
 - (q) If a and m are relatively prime positive integers and if a is primitive root of m then prove that the integers a, a^2 , $a^{(m)}$ form a reduced residue set modulo m. 5

317