B.Sc. Part-II (Semester-III) Examination MATHEMATICS
 (Elementary Number Theory)
 Paper-VI

Time : Three Hours]
[Maximum Marks : 60
N.B. :-(1) Q. No. 1 is compulsory ; attempt it only once.
(2) Attempt ONE question from each unit.

1. Choose correct alternatives :-
(1) If $\mathrm{a} \mid \mathrm{bc}$ and $(\mathrm{a}, \mathrm{b})=1$ then
(a) $a \mid b$
(b) $\mathrm{a} \mid \mathrm{c}$
(c) $\mathrm{c} \mid \mathrm{a}$
(d) $\mathrm{b} \mid \mathrm{a}$
(2) A necessary and sufficient condition for $[a, b]=a b$ is :
(a) $[\mathrm{a}, \mathrm{b}]=1$
(b) $\mathrm{ab}=1$
(c) $(\mathrm{a}, \mathrm{b})=1$
(d) None of these
(3) The conjecture 'Every odd integer is the sum of at most three primes' is given by :
(a) Euler
(b) Goldbach
(c) Eratosthenes
(d) None of these
(4) If p_{n} is the n^{h} prime number then
(a) $\mathrm{p}_{\mathrm{n}} \leq 2^{2^{\mathrm{n}}}$
(b) $\mathrm{p}_{\mathrm{n}} \leq 2^{\mathrm{n}-1}$
(c) $\mathrm{p}_{\mathrm{n}} \leq 2^{2^{\mathrm{n}-1}}$
(d) $\mathrm{p}_{\mathrm{n}} \leq 2$
(5) The set $\{0,1,2,3\}$ is complete system of residue modulo :
(a) 3
(b) 4
(c) 5
(d) 2
(6) The function f is multiplicative if
(a) $f(m n)=f(m)+f(n)$
(b) $f(m n)=f(m) \cdot f(n)$
(c) $f(\mathrm{mn})=\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n})$
(d) None of these
(7) The statement $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ is equivalent to
(a) $\mathrm{b} \equiv \mathrm{a}(\bmod \mathrm{m})$
(b) $(\mathrm{a}-\mathrm{b}) \equiv 0(\bmod \mathrm{~m})$
(c) Both (a) and (b) are true
(d) Both (a) and (b) are false
(8) If $\mathrm{n}=18$ then the value of $\tau(18)$ and $\sigma(18)$ are :
(a) 6 and 39
(b) 6 and 40
(c) 39 and 40
(d) 6 and 7
(9) If P is prime divisor of Fermat number $\mathrm{F}_{\mathrm{n}}=2^{2^{n}}+1$ then $\mathrm{O}_{\mathrm{p}}(2)=$ \qquad .
(a) $2^{2^{n}}$
(b) $2^{\mathrm{n}-1}$
(c) 2^{n+1}
(d) $2^{2^{n}}$
(10) The order of 2 modulo 7 is :
(a) 3
(b) 2
(c) 7
(d) 1
$10 \times 1=10$

UNIT-I

2. (a) Let a and b be integers, not both zero. Then prove that there exist integers x and y such that $(a, b)=x a+y b$.
(b) If $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{I}, \mathrm{b} \neq 0$ and $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b}$ then prove that $(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{r})$.
(c) Define :
(i) Relatively prime
(ii) Greatest Common Divisor
3. (p) Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers. Then prove that

$$
\begin{equation*}
[\mathrm{a}, \mathrm{~b}, \mathrm{c}]=\frac{\mathrm{abc}}{(\mathrm{ab}, \mathrm{bc}, \mathrm{ca})} \tag{3}
\end{equation*}
$$

(q) If $(a, b)=1$ then prove that $(a c, b)=(c, b)$.
(r) Find the gcd of 275 and -200 and express it in the form $x a+y b$.

UNIT-II

4. (a) If m and n are distinct non-negative integers then prove that $\left(\mathrm{F}_{\mathrm{m}}, \mathrm{F}_{\mathrm{n}}\right)=1$.
(b) Prove that there are infinitely many number primes of the form $4 \mathrm{n}+3$, where n is a positive integer.
5. (p) Prove that the Fermat number F5 is divisible by 641 and hence composite.
(q) Prove that every positive integer greater than one has at least one prime divisor. 5

UNIT-III

6. (a) Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \varepsilon I$ such that $\mathrm{a}_{1} \equiv \mathrm{~b}_{1}(\bmod m)$ and $\mathrm{a}_{2} \equiv \mathrm{~b}_{2}(\bmod m)$ then prove that :
(i) $\left(\mathrm{a}_{1} \pm \mathrm{a}_{2}\right) \equiv\left(\mathrm{b}_{1} \pm \mathrm{b}_{2}\right)(\bmod \mathrm{m})$
(ii) $\mathrm{a}_{1} \mathrm{a}_{2} \equiv \mathrm{~b}_{1} \mathrm{~b}_{2}(\bmod m)$
(b) If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ then prove that $\mathrm{a}^{\mathrm{n}} \equiv \mathrm{b}^{\mathrm{n}}(\bmod \mathrm{m})$.
(c) Solve the congruence using inverse of a modulo $\mathrm{m}, 3 \mathrm{x} \equiv 1(\bmod 125)$.
7. (p) Solve the system of three congruences $x \equiv 1(\bmod 4), x \equiv 0(\bmod 3), x \equiv 5(\bmod 7)$.
(q) Prove that $\mathrm{ca} \equiv \mathrm{cb}(\bmod \mathrm{m}) \Leftrightarrow \mathrm{a} \equiv \mathrm{b}\left(\bmod \frac{\mathrm{m}}{\mathrm{d}}\right)$, where $\mathrm{d}=(\mathrm{c}, \mathrm{m})$.
(r) Find the remainder of 43^{289} is divided by 7 .

UNIT-IV

8. (a) Let $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot \ldots \ldots p_{m}^{a_{m}}$ be the prime factorisation of the position integer n. Then prove that

$$
\begin{equation*}
\phi(\mathrm{n})=\mathrm{n}\left(1-\frac{1}{\mathrm{p}_{1}}\right)\left(1-\frac{1}{\mathrm{p}_{2}}\right) \ldots\left(1-\frac{1}{\mathrm{p}_{\mathrm{m}}}\right) . \tag{3}
\end{equation*}
$$

(b) If F is multiplicative function and $F(n)=\sum_{d \mid n} f(d)$, then prove that f is also multiplicative.
(c) Solve the linear congruence $3 x \equiv 5(\bmod 16)$ by using Euler's theorem.
9. (p) Show that the sum of $\phi(\mathrm{n})$ positive integers less than $\mathrm{n}(>1)$ and relatively prime to n is $\frac{\mathrm{n}}{2} \phi(\mathrm{n})$.
(q) Let the positive integer n have prime factorisation

$$
\mathrm{n}=\mathrm{p}_{1}^{\mathrm{a}_{1}} \cdot \mathrm{p}_{2}^{\mathrm{a}_{2}} \cdot \ldots . . \mathrm{p}_{\mathrm{m}}^{\mathrm{a}_{\mathrm{m}}}
$$

Then prove that $\tau(n)=\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots \ldots\left(a_{m}+1\right)=\prod_{\mathrm{i}=1}^{m}\left(a_{i}+1\right)$ and

$$
\begin{equation*}
\sigma(\mathrm{n})=\frac{\mathrm{p}_{1}^{\mathrm{a}_{1}+1}-1}{\mathrm{p}_{1}-1} \cdot \frac{\mathrm{p}_{2}^{\mathrm{a}_{2}+1}-1}{\mathrm{p}_{2}-1} \ldots . . . \frac{\mathrm{p}_{\mathrm{m}}^{\mathrm{a}_{\mathrm{m}}+1}-1}{\mathrm{p}_{\mathrm{m}}-1}=\prod_{\mathrm{i}=1}^{\mathrm{m}} \frac{p_{\mathrm{i}}^{\mathrm{a}_{\mathrm{i}}+1}-1}{\mathrm{p}_{\mathrm{i}}-1} . \tag{3}
\end{equation*}
$$

(r) For each positive integer $\mathrm{n} \geq 1$, prove

$$
\sum_{\mathrm{dn}} \mu(\mathrm{~d})= \begin{cases}1, & \mathrm{n}=1 \\ 0 & , \\ \mathrm{n}>1\end{cases}
$$

UNIT-V

10. (a) Let p be prime number and $\mathrm{d} \mid(\mathrm{p}-1)$. Then prove that the congruence $\mathrm{x}^{d}-1 \equiv 0(\bmod \mathrm{p})$ has exactly d solutions.
(b) Find all primitive roots of $\mathrm{p}=17$.
11. (p) If $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\mathrm{n}$ then prove that $\mathrm{O}_{\mathrm{m}}\left(\mathrm{a}^{\mathrm{k}}\right)=\frac{\mathrm{n}}{(\mathrm{n}, \mathrm{k})}$ where k is a positive integer.
(q) If a and m are relatively prime positive integers and if a is primitive root of m then prove that the integers $a, a^{2}, \ldots \ldots .{ }^{\not a(m)}$ form a reduced residue set modulo m.
