AD-4583

B.Sc. (Part-I) (Semester-I) (CBCS) Examination

MATHEMATICS

(I) Algebra & Trigonometry

Time : 3 Hours]

[Maximum Marks : 60

- Note :--- (1) Question No. 1 is compulsory. Attempt once. (2) Attempt one question from each unit.
- 1. Choose the correct Alternative :

(i) The matrix
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 is ______.
(a) Scalar matrix (b) Identity matrix
(c) Row matrix (d) Column matrix
(ii) A square matrix $A = [a_{ij}]$ is said to be skew-symmetric if :
(a) $a_{ij} = a_{ji}$ (b) $a_{ij} = -a_{ji}$
(c) Both (a) and (b) (d) None of these
(iii) The rank of zero matrix is :
(a) 1 (b) 0
(c) n (d) None of these
(iv) For a symmetric matrix the eigen vectors are :
(a) Equal (b) Orthogonal
(c) Parallel (d) None of these
(v) If α , β , γ are roots of $ax^3 + bx^2 + cx + d = 0$ then $\Sigma \alpha$ is _____.
(a) $\frac{b}{a}$ (b) $-\frac{b}{a}$

(vi) The number of positive and negative roots of an equation of degree n is found by :

- (a) Carden's Method (b) Ferrari's Method
- (c) Descartes' rules of signs (d) None of these

(c)

a

(d) $\frac{d}{a}$

(vii) Identify the value of $\sin^{-1}x$

(a)
$$\log \left[x + \sqrt{x^2 + 1} \right]$$
 (b) $\log \left[x + \sqrt{x^2 - 1} \right]$
(c) $\log \left[x + \sqrt{1 - x^2} \right]$ (d) None of these
(viii) The value of $e^{-\frac{p_1}{2}}$ is ______.
(a) $-i$ (b) $1 + i$
(c) $1 - i$ (d) 0
(ix) The series $\frac{p}{4} = \frac{1}{2} - \frac{1}{3} \times \frac{1}{2^3} + \frac{1}{5} \times \frac{1}{2^5} - \dots + \frac{1}{3} - \frac{1}{3} \times \frac{1}{3^3} + \frac{1}{5} \times \frac{1}{3^5}$
is called as
(a) Rutherford's Series (b) Geometric Series
(c) Gregory's Series (d) Euler's Series
(x) The sum of infinite Geometric Series :
 $a + ar + ar^2 + \dots + a \cdot r^{n-1} + \dots, |r| < 1$ is
(a) $\frac{r}{a - r}$ (b) 1
(c) $\frac{a}{1 - r}$ (d) $\frac{r}{1 - r}$ $10 \times 1 = 10$

UNIT—I

2. (a) Define Hermition matrix and show that $\begin{bmatrix} 2 & 4-i & 6i \\ 4+i & 1 & 3 \\ -6i & 3 & 0 \end{bmatrix}$ is hermitian matrix. 3

(b) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$ then verify $(AB)^1 = B^1 \cdot A^1$ 2

(c) Find the adjoint of matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 0 \\ -2 & 6 & 1 \end{bmatrix}$$
 5

.

3. (p) Prove that Every square matrix can be expressed as the sum of symmetric and skew-symmetric matrices.

(q) Let
$$A = \begin{bmatrix} 2 & 1 & 3 & -1 \\ 4 & 2 & 1 & -4 \\ 3 & -1 & 2 & 1 \end{bmatrix}$$
 then show that :
(i) $R_{21}^{-1} = R_{23}$
(ii) $R_{1}^{-1}(3) = R_{1}\left(\frac{1}{3}\right)$ and
(iii) $R_{21}^{-1}(-2) = R_{21}(2)$
(r) Reduce the matrix $A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ to the normal form
UNIT--II
4. (a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$.
(b) Find the eigen values and the corresponding eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & 6 \\ -1 & -2 & 0 \end{bmatrix}$
6
5. (p) Find the row rank and the column rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 0 & 5 \end{bmatrix}$.
(q) State Cayley-Hamilton theorem. Explain it for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.
6
(a) State Descartes' rule of sign. Find the nature of roots of the equation $3x^{4} + 12x^{2} + 5x - 4 = 0$
(b) If α , β , γ are the roots of the equation $x^{3} + px^{3} + qx + r = 0$, then find the value of
(i) $\Sigma \alpha^{2} \beta$
(ii) $\Sigma \alpha^{2} \beta^{2}$
(iii) $\Sigma \alpha^{2} \beta^{2}$

- 7. (p) Find the equation whose roots are the roots of $x^5 + 7x^4 + 7x^3 8x^2 + x + 1 = 0$ with their signs changed. 2
 - (q) Find the equation whose roots are the roots of $x^4 5x^3 + 7x^2 17x + 11 = 0$ each diminished by 4.
 - (r) Solve $x^3 15x^2 33x + 847 = 0$ by Cardon's method.

UNIT-IV

8. (a) Prove that
$$\frac{1 + \sin ? + i \cos ?}{1 + \sin ? - i \cos ?} = \sin ? + i \cos ?$$
.

(b) Find all the values of $(-i)^{1/6}$.

Hence prove that
$$\left(1 + \sin \frac{p}{5} + i \cos \frac{p}{5}\right)^5 + i \left(1 + \sin \frac{p}{5} - i \cos \frac{p}{5}\right)^5 = 0.$$
 $3+3$

9. (p) If
$$\tan (A + iB) = x + iy$$
, then prove that $\tan 2A = \frac{2x}{1 - x^2 - y^2}$ and $\tan 2B = \frac{2y}{1 + x^2 + y^2}$.
Also show that $x^2 + y^2 + 2x\cot 2A = 1$ and $x^2 + y^2 - 2y \coth 2B + 1 = 0$.
(q) Separate into real and imaginary parts of $\cos^{-1}\left(\frac{3i}{4}\right)$.

(q) Separate into real and imaginary parts of
$$\cos^{-1}\left(\frac{4}{4}\right)$$
.
UNIT—V

317

$$\frac{p}{4} = \frac{1}{2} - \frac{1}{3} \cdot \frac{1}{2^3} + \frac{1}{5} - \frac{1}{2^5} - \dots + \frac{1}{3} - \frac{1}{3} \times \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5}.$$
4

(b) Sum the series $\sinh x + n \sinh 2x + \frac{n(n-1)}{1.2} \cdot \sinh 3x + \dots$ to n + 1 terms, where n is a positive integer. 6

11. (p) Find the sum of the series :
$$a \sin x - \frac{1}{3} a^3 \sin 3x + \frac{1}{5} a^5 \sin 5x + \dots$$
 6

(q) Prove that
$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{p}{4}$$
.

317

5

4