B.Sc. (Part-I) (Semester-I) (CBCS) Examination
 MATHEMATICS

 (I) Algebra \& Trigonometry

 (I) Algebra \& Trigonometry}

Time : 3 Hours]
Note :- (1) Question No. 1 is compulsory. Attempt once.
(2) Attempt one question from each unit.

1. Choose the correct Alternative :
(i) The matrix $\mathrm{A}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$ is \longrightarrow.

(a) Scalar matrix
(b) Identity matrix
(c) Row matrix
(d) Column matrix
(ii) A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is said to be skew-symmetric if :
(a) $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$
(b) $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$
(c) Both (a) and (b)
(d) None of these
(iii) The rank of zero matrix is :
(a) 1
(b) 0
(c) n
(d) None of these
(iv) For a symmetric matrix the eigen vectors are :
(a) Equal
(b) Orthogonal
(c) Parallel
(d) None of these
(v) If α, β, γ are roots of $a x^{3}+b x^{2}+c x+d=0$ then $\sum \alpha$ is \qquad .
(a) $\frac{b}{a}$
(b) $-\frac{\mathrm{b}}{\mathrm{a}}$
(c) $\frac{c}{a}$
(d) $\frac{\mathrm{d}}{\mathrm{a}}$
(vi) The number of positive and negative roots of an equation of degree n is found by :
(a) Carden's Method
(b) Ferrari's Method
(c) Descartes' rules of signs
(d) None of these
(vii) Identify the value of $\sin ^{-1} \mathrm{X}$
(a) $\quad \log \left[\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right]$
(b) $\quad \log \left[x+\sqrt{x^{2}-1}\right]$
(c) $\log \left[x+\sqrt{1-\mathrm{x}^{2}}\right]$
(d) None of these
(viii) The value of $\mathrm{e}^{-\frac{p_{i}}{2}}$ is \qquad .
(a) -i
(b) $1+\mathrm{i}$
(c) $1-\mathrm{i}$
(d) 0
(ix) The series $\frac{\mathrm{p}}{4}=\frac{1}{2}-\frac{1}{3} \times \frac{1}{2^{3}}+\frac{1}{5} \times \frac{1}{2^{5}}-\ldots \ldots \ldots+\frac{1}{3}-\frac{1}{3} \times \frac{1}{3^{3}}+\frac{1}{5} \times \frac{1}{3^{5}}$ is called as
(a) Rutherford's Series
(b) Geometric Series
(c) Gregory's Series
(d) Euler's Series
(x) The sum of infinite Geometric Series :
$a+a r+a r^{2}+\ldots \ldots \ldots+a \cdot r^{n-1}+\ldots .,|r|<1$ is
(a) $\frac{r}{a-r}$
(b) 1
(c) $\frac{\mathrm{a}}{1-\mathrm{r}}$
(d) $\frac{\mathrm{r}}{1-\mathrm{r}}$
$10 \times 1=10$

UNIT—I

2. (a) Define Hermition matrix and show that $\left[\begin{array}{ccc}2 & 4-i & 6 i \\ 4+i & 1 & 3 \\ -6 i & 3 & 0\end{array}\right]$ is hermitian matrix.
(b) If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$ then verify $(\mathrm{AB})^{1}=\mathrm{B}^{1} . \mathrm{A}^{1}$
(c) Find the adjoint of matrix $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & 4 & 0 \\ -2 & 6 & 1\end{array}\right]$
3. (p) Prove that Every square matrix can be expressed as the sum of symmetric and skew-symmetric matrices.
(q) Let $A=\left[\begin{array}{cccc}2 & 1 & 3 & -1 \\ 4 & 2 & 1 & -4 \\ 3 & -1 & 2 & 1\end{array}\right]$ then show that:
(i) $\mathrm{R}_{23}^{-1}=\mathrm{R}_{23}$
(ii) $\mathrm{R}_{1}^{-1}(3)=\mathrm{R}_{1}\left(\frac{1}{3}\right)$ and
(iii) $\mathrm{R}_{21}^{-1}(-2)=\mathrm{R}_{21}(2)$
(r) Reduce the matrix $\mathrm{A}=\left[\begin{array}{rrrr}2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right]$ to the normal form.

UNIT-II

4. (a) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{rrrr}1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1\end{array}\right]$.
(b) Find the eigen values and the corresponding eigen vectors of the matrix $\left[\begin{array}{rcc}-2 & 2 & -3 \\ 2 & 1 & 6 \\ -1 & -2 & 0\end{array}\right]$.
5. (p) Find the row rank and the column rank of $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -4 & 0 & 5\end{array}\right]$.
(q) State Cayley-Hamilton theorem. Explain it for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.

UNIT-III

6. (a) State Descartes' rule of sign. Find the nature of roots of the equation $3 x^{4}+12 x^{2}+5 x-4=0$. $1+3$
(b) If α, β, γ are the roots of the equation $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$, then find the value of (i) $\sum \alpha^{2}$
(ii) $\sum \alpha^{2} \beta$
(iii) $\sum \alpha^{2} \beta^{2}$
7. (p) Find the equation whose roots are the roots of $x^{5}+7 x^{4}+7 x^{3}-8 x^{2}+x+1=0$ with their signs changed.
(q) Find the equation whose roots are the roots of $x^{4}-5 x^{3}+7 x^{2}-17 x+11=0$ each diminished by 4 .
(r) Solve $x^{3}-15 x^{2}-33 x+847=0$ by Cardon's method.

UNIT-IV

8. (a) Prove that $\frac{1+\sin ?+i \cos ?}{1+\sin ?-i \cos ?}=\sin ?+i \cos ?$.

Hence prove that $\left(1+\sin \frac{\mathrm{p}}{5}+i \cos \frac{\mathrm{p}}{5}\right)^{5}+i\left(1+\sin \frac{\mathrm{p}}{5}-i \cos \frac{\mathrm{p}}{5}\right)^{5}=0$
(b) Find all the values of $(-i)^{1 / 6}$.
9. (p) If $\tan (A+i B)=x+i y$, then prove that $\tan 2 A=\frac{2 x}{1-x^{2}-y^{2}}$ and $\tan 2 B=\frac{2 y}{1+x^{2}+y^{2}}$.

Also show that $x^{2}+y^{2}+2 x \cot 2 A=1$ and $x^{2}+y^{2}-2 y \operatorname{coth} 2 B+1=0$.
(q) Separate into real and imaginary parts of $\cos ^{-1}\left(\frac{3 i}{4}\right)$.

UNIT-V

10. (a) Prove that:

$$
\begin{equation*}
\frac{\mathrm{p}}{4}=\frac{1}{2}-\frac{1}{3} \cdot \frac{1}{2^{3}}+\frac{1}{5}-\frac{1}{2^{5}}-\ldots \ldots+\frac{1}{3}-\frac{1}{3} \times \frac{1}{3^{3}}+\frac{1}{5} \cdot \frac{1}{3^{5}} . \tag{4}
\end{equation*}
$$

(b) Sum the series $\sinh \mathrm{x}+\mathrm{n} \sinh 2 \mathrm{x}+\frac{\mathrm{n}(\mathrm{n}-1)}{1.2} \cdot \sinh 3 \mathrm{x}+\ldots$. to $\mathrm{n}+1$ terms, where n is a positive integer.
11. (p) Find the sum of the series: $a \sin x-\frac{1}{3} a^{3} \sin 3 x+\frac{1}{5} a^{5} \sin 5 x+\ldots .$.
(q) Prove that $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{70}+\tan ^{-1} \frac{1}{99}=\frac{\mathrm{p}}{4}$.

