B.Sc. (Part—III) Semester-VI Examination MATHEMATICS (Linear Algebra)
 Paper-XI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt this question once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative (1 mark each) :-
(i) Let A and B be non-empty subsets of a vector space V. Suppose that $A \subseteq B$, then :
(a) If B is LI , then so is A
(b) If B is LD , then so is A
(c) If A is LI, then so is B
(d) If B is generating set, then so is A
(ii) The vectors (a, b) and ($\mathrm{c}, \mathrm{d})$ are LD iff :
(a) $\mathrm{ad}-\mathrm{bc}=0$
(b) \quad ad-bc $\neq 0$
(c) $\mathrm{ad}+\mathrm{bc}=0$
(d) \quad ad $+b c \neq 0$
(iii) The kernel of a linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is a subspace of :
(a) V
(b) U
(c) U and V
(d) None of these
(iv) A square matrix is non-singular iff its row vectors are :
(a) LD
(b) LI
(c) LI and LD
(d) None of these
(v) Annihilator of $\mathrm{W}, \mathrm{A}(\mathrm{W})$ is a subspace of :
(a) $\hat{\mathrm{V}}$
(b) W
(c) V
(d) None of these
(vi) If T be a linear map on R^{2} which is represented in the standard basis by the matrix $\mathrm{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then the eigen values of T are :
(a) ± 1
(b) $\pm \mathrm{i}$
(c) ± 2
(d) None of these
(vii) If u and v be vectors in an inner product space such that $\|u+v\|=8,\|u-v\|=6$ and $\|u\|=7$ then the value of $\|v\|$ is :
(a) $\sqrt{51}$
(b) $\sqrt{2}$
(c) 1
(d) 2
(viii) In an inner product space V over F the inequality $|(\mathrm{u}, \mathrm{v})| \leq\|\mathrm{u}\|\|\mathrm{v}\| \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}$ is known as :
(a) Triangular inequality
(b) Bessel's inequality
(c) Cauchy-Schwarz inequality
(d) None of these
(ix) If A is any submodule of an R -module M , then the zero element of the quotient group M/A is :
(a) A
(b) $\{0\}$
(c) M
(d) None of these
(x) R-module homomorphism is a linear transformation of vector spaces if :
(a) R with unit element
(b) R is commutative
(c) R is field
(d) None of these

UNIT-I

2. (a) Let R^{+}be the set of all positive real numbers. Define the operation of addition \oplus and scalar multiplication \otimes as follows :
$\mathrm{u} \oplus \mathrm{v}=\mathrm{uv}, \quad \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}^{+}$
and $\alpha \otimes u=u^{\alpha}, \quad \forall u \in R^{+}, \alpha \in R$
Prove that R^{+}is a real vector space.
(b) Prove that an arbitrary intersection of Subspaces of a vector space is again a subspace.
(c) If x, y, z are LI vectors of a vector space V, then prove that $x+y, y+z, z+x$ are LI. 3
3. (p) Show that the ordered set $S=\{(1,1,2),(1,-1,1),(1,3,3),(-1,3,0)\}$ is LD and locate one of the vectors that belongs to the span of previous one. Find also the largest LI subset whose span is equal [S].
(q) Define subspace of a vector space and let U, W be subspaces of a vector space $V(F)$. Prove that $\mathrm{U} W$ is a subspace of V iff $\mathrm{U} \subseteq \mathrm{W}$ or $\mathrm{W} \subseteq \mathrm{U}$.

UNIT-II
4. (a) Let U, V be vector spaces over a field F and $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map, then prove that:
(i) $\mathrm{T}(\overline{\mathrm{o}})=\overline{\mathrm{o}}$,
(ii) $\quad \mathrm{T}(-\mathrm{u})=-\mathrm{T}(\mathrm{u}), \quad \forall \mathrm{u} \in \mathrm{U}$
(iii) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots \ldots .+\alpha_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}\right)=\alpha_{1} \mathrm{~T}\left(\mathrm{u}_{1}\right)+\alpha_{2} \mathrm{~T}\left(\mathrm{u}_{2}\right)+\ldots \ldots . .+\alpha_{\mathrm{n}} \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right)$, $\forall u_{i} \in \mathrm{U}, \alpha_{\mathrm{i}} \in \mathrm{F}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{n} \in \mathrm{N}$.

$$
1+1+3
$$

(b) Find the matrix of the linear map $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{3}$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(-\mathrm{x}+2 \mathrm{y}, \mathrm{y},-3 \mathrm{x}+3 \mathrm{y})$ related to the bases $\mathrm{B}_{1}=\{(1,2),(-2,1)\}$ and $\mathrm{B}_{2}\{(-1,0,2),(1,2,3),(1,-1,1)\} .5$
5. (p) A linear transformation T is completely determined by its values on the elements of a basis. Precisely, if $B=\left\{u_{1}, u_{2}, \ldots \ldots . u_{n}\right\}$ is a basis for U and $v_{1}, v_{2}, \ldots \ldots . v_{n}$ be n vectors (not neceessarity distinct) in V . Then prove that there exists a unique linear transformation $T: U \rightarrow V$ such that $T\left(u_{i}\right)=v_{i}$, for $i=1,2, \ldots \ldots ., n$ n.
(q) Find the range, kernel, rank and nullity of the matrix $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]$ and verify

Rank -nullity theorem.

UNIT-III

6. (a) Let V be the finite dimensional vector space over F. Then prove that $V \approx \hat{\hat{V}}$. 5
(b) The element $\lambda \in \mathrm{F}$ is a CR of $\mathrm{T} \in \mathrm{L}(\mathrm{V})$ iff for some $\mathrm{V}(\neq 0) \in \mathrm{V}, \mathrm{T}_{\mathrm{V}}=\lambda_{\mathrm{V}}$. Prove this. 3
(c) Define eigen values and eigen vectors of a matrix.
7. (p) If W be a subspace of a finite dimensional vector space V , then prove that $\mathrm{A}(\mathrm{A}(\mathrm{w}))=\mathrm{W}$.
(q) If K_{λ} is an eigen space, then prove that K_{λ} is subspace of vector space V .
(r) Let $\lambda \neq 0$ be an eigen value of an invertible $L T, T \in L(V)$. Then show that λ^{-1} is an eigen value of T^{-1}.

UNIT-IV

8. (a) In č define, for $u=\left(\alpha_{1}, \alpha_{2}\right)$ and $v=\left(\beta_{1}, \beta_{2}\right),(u, v)=2 \alpha_{1} \beta_{1}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\alpha_{2} \beta_{2}$. Show that this defines an inner product on c^{2}.
(b) Find the orthonormal basis of $\mathrm{P}_{2}[-1,1]$ starting from the basis $\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ using the inner product defined by : (f, g) $=\int_{-1}^{1} f(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \mathrm{dx}$.
9. (p) Define othogonal set and let $\left\{x_{1}, x_{2}, \ldots \ldots, x_{n}\right\}$ be an orthogonal set. Then prove that $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots \ldots \ldots+\mathrm{x}_{\mathrm{n}}\right\|^{2}=\left\|\mathrm{x}_{1}\right\|^{2}+\left\|\mathrm{x}_{2}\right\|^{2}+\ldots \ldots .+\left\|\mathrm{x}_{\mathrm{n}}\right\|^{2}$.
(p) If $\left\{\mathrm{w}_{1}, \ldots \ldots . \mathrm{w}_{\mathrm{m}}\right\}$ is an orthonormal set in V , then prove that:
$3 \sum_{i=1}^{m}\left|\left(w_{i}, v\right)\right|^{2} \leq\|v\|^{2}$, for any $v \in V$.
10. (a) Let M be an R-module. Then prove that:
(i) $\mathrm{r} 0=0, \forall \mathrm{r} \in \mathrm{R}$
(ii) $\quad-(\mathrm{ra})=\mathrm{r}(-\mathrm{a})=(-\mathrm{r}) \mathrm{a}, \forall \mathrm{r} \in \mathrm{R}$ and $\mathrm{a} \in \mathrm{M}$.
(b) If λ is a left ideal of R and if M is an R-module, then show that for $m \in M, \lambda_{m}=\{x m \mid x \in \lambda\}$ is a submodule of M .
(c) If T: M $\rightarrow \mathrm{H}$ be an R-module homomorphism, then prove that Ker T is a submodule of M .
11. (p) Define unital R-module and let A be a submodule of unital R-module M , then prove that $\mathrm{M} \mid \mathrm{A}$ is also a unital R -module.
(q) Let M be an R-module. If H and K are submodules of M with $K \subset H$, then prove that $\frac{M}{H} \approx \frac{M \mid K}{H \mid K}$.
