# B.Sc. Part-III Semester-VI Examination <br> <br> MATHEMATICS (Graph Theory) <br> <br> MATHEMATICS (Graph Theory) <br> Paper-XII 

## Time : Three Hours]

[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it at once only.
(2) Solve ONE question from each Unit.

1. Choose the correct alternative in the following :
(1) For Graph $G$ with e edges and $n$ vertices, the sum of degrees of all vertices is equal to :
(a) 2 e
(b) $e / 2$
(c) $\mathrm{e}+1$
(d) $\mathrm{e}-1$
(2) A graph that has neither loops nor parallel edges is called :
(a) Planar graph
(b) Complete graph
(c) Simple graph
(d) None of these
(3) The length of longest path in a tree is called its :
(a) Centre
(b) Radius
(c) Diameter
(d) Walk
(4) For any connected graph with $n$ vertices, e edges, its spanning tree has $\qquad$ chords.
(a) $\mathrm{e}-\mathrm{n}+1$
(b) $\mathrm{e}-\mathrm{n}-1$
(c) $\mathrm{e}+\mathrm{n}+1$
(d) $\mathrm{e}-\mathrm{n}+2$
(5) The number of common edges in circuit and cutset are :
(a) Even
(b) Odd
(c) Empty
(d) None of these
(6) If $G$ is a planar graph with $n$ vertices, $e$ edges, $f$ faces and $k$ components then $\mathrm{n}-\mathrm{e}+\mathrm{f}=$ $\qquad$ .
(a) $\mathrm{k}+1$
(b) $\mathrm{k}-1$
(c) $\mathrm{n}+\mathrm{k}$
(d) $\mathrm{n}-\mathrm{k}$
(7) Subspaces $W_{\ell}$ and $W_{s}$ are said to be orthogonal complements iff :
(a) $\operatorname{dim}\left(\mathrm{W}_{\ell} \cup \mathrm{W}_{\mathrm{s}}\right)=0$
(b) $\operatorname{dim}\left(\mathrm{W}_{\ell} \cap \mathrm{W}_{\mathrm{s}}\right)=0$
(c) $\operatorname{dim}\left(\mathrm{W}_{\ell} \cup \mathrm{W}_{\mathrm{s}}\right)=1$
(d) $\operatorname{dim}\left(\mathrm{W}_{\ell} \cap \mathrm{W}_{\mathrm{s}}\right)=1$
(8) Let Graph $G$ be connected with 4 vertices and 5 edges then nullity $=$
(a) 9
(b) 5
(c) 2
(d) 4
(9) There is no rows with all zeros in the :
(a) Incidence matrix
(b) Isolated matrix
(c) Cutset matrix
(d) Path matrix
(10) If $A(G)$ is an incidence matrix of a completed graph $G$ with $n$ vertices then rank of $\mathrm{A}(\mathrm{G})$ is :
(a) $(n+1) / 2$
(b) $(\mathrm{n}-1) / 2$
(c) $\mathrm{n}-1$
(d) $\mathrm{n}+1$
$1 \times 10=10$

## UNIT-I

2. (a) Define (i) Regular graph, (ii) Null graph and show that the maximum number of edges in a simple graph of $n$ vertices is $n(n-1) / 2$.
(b) Define complete graph and draw the graphs of the following chemical compounds :
(i) $\mathrm{CH}_{4}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{6}$
(iii) $\mathrm{C}_{6} \mathrm{H}_{6}$
(iv) $\mathrm{N}_{2} \mathrm{O}_{3}$
3. (p) From the graph given below answer the following :

(i) Write the degree of each vertex
(ii) Write odd degree vertices
(iii) Write adjacent vertices of vertex A
(iv) Is the graph simple ? Why ?
(q) Define :
(i) Path
(ii) Circuit

Let $u$ and $v$ be vertices in a graph $G$. If there are two different walks from $u$ to $v$ then prove that $G$ contains a circuit.

## UNIT-II

4. (a) Define centre of a tree and show that every tree has either one or two centres.
(b) If G is a graph with n vertices then prove that following statements are equivalent:
(i) $G$ is a tree
(ii) G is connected and has $\mathrm{n}-1$ edges.
5. (p) Define spanning tree and find out all possible spanning trees of the following graph :

(q) Define Ecentricity of a vertex. Prove that the distance between two vertices in a connected graph is a metric.

## UNIT-III

6. (a) Define Cutset. Find all the cutsets in the following graph :

(b) Prove that the ringsum of any two cutsets in a graph is either a third cutset or an edge disjoint union of cutsets.
7. (p) Prove that every cutset in a connected graph G must contain at least one branch of every spanning tree of G .
(q) Define:
(i) Fundamental cutset
(ii) Fundamental circuit.

Find fundamental cutsets with reference to spanning tree : $T=\{b, c, e, h, k\}$


## UNIT-IV

8. (a) Let $G$ be a graph given as in figure. Find $W_{G}, W_{s}, W_{r}, W_{r} \cap W_{s}, W_{r} \cup W_{s}$ with spanning tree $T=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$.

(b) Show that the set of all cutset vectors including zero vector in $\mathrm{W}_{\mathrm{G}}$ forms a subspace of $\mathrm{W}_{\mathrm{G}}$.

5
9. (p) Show that subspace $\mathrm{W}_{\mathrm{r}}$ and $\mathrm{W}_{\mathrm{s}}$ are orthogonal complements iff $\mathrm{W}_{\mathrm{r}} \cap \mathrm{W}_{\mathrm{s}}=0$ i.e. $\mathrm{W}_{\mathrm{r}} \cap \mathrm{W}_{\mathrm{s}}=\{\phi\}$.
(q) Prove that the dot product of two vectors, one representing a subspace $g_{1}$ and other $g_{2}$ is zero if the number of edges common to $g_{1}$ and $g_{2}$ is even and the dot product is 1 if the number of common edges is odd.

## UNIT-V

10. (a) Prove that the reduced incidence matrix of a graph is non-singular iff the graph is a tree.
(b) Define circuit matrix. Find the circuit matrix of the following graph :

11. (p) Let A and B be respectively, the incidence matrix and the circuit matrix of a loop free graph whose columns are arranged using the same order of edges. Then show that every row of $A$ is orthogonal to every row of $B$ i.e $A \cdot B^{T}=0, B \cdot A^{T}=0(\bmod 2)$.
(q) Define cutset matrix. Find the cutset matrix of the following graph :

