# B.Sc. Part-I Semester-II Examination <br> MATHEMATICS <br> (Vector Analysis \& Solid Geometry) <br> Paper-IV 

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it at once only.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternative :
(1) The vectors $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar and $x \bar{a}+y \bar{b}+z \bar{c}=0$ then :
(a) $x+y=z$
(b) $x=y \neq z=1$
(c) $\mathrm{x}=\mathrm{y}=\mathrm{z}=0$
(d) $x=y+z$
(2) If two vectors in a scalar triple product are same then the scalar triple product is :
(a) One
(b) Two
(c) Three
(d) Zero
(3) The equation of osculating plane is :
(a) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{b}}=0$
(b) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{t}}=0$
(c) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{n}}=0$
(d) None of these
(4) A line perpendicular to both $\overline{\mathrm{t}}$ and $\overline{\mathrm{n}}$ is called :
(a) Tangent
(b) Binormal
(c) Principal normal
(d) None of these
(5) A vector $\overline{\mathrm{f}}$ is solenoidal if :
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) $\operatorname{curl} \overline{\mathrm{f}}=0$
(c) $\operatorname{div} \overline{\mathrm{f}} \neq 0$
(d) $\operatorname{curl} \overline{\mathrm{f}} \neq 0$
(6) If $\overline{\mathrm{r}}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$ then $\operatorname{div} \mathrm{r}=$ $\qquad$
(a) Zero
(b) One
(c) Three
(d) Two
(7) The curve of intersection of two spheres is a :
(a) Plane
(b) Circle
(c) Sphere
(d) Line
(8) If the radius of the circle is equal to the radius of the sphere, then the circle is :
(a) a small circle
(b) an imaginary circle
(c) great circle
(d) none of these
(9) The equation of the cone through the three axes is of the form :
(a) fyz $+\mathrm{gzx}+\mathrm{hxy}=0$
(b) fyz $-\mathrm{gzx}-\mathrm{hxy}=0$
(c) fyz - gzx $+\mathrm{hxy}=0$
(d) None of these
(10) The equation $a x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$ represent a cone if :
(a) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}=\mathrm{d}$
(b) $\frac{u^{2}}{a}+\frac{v^{2}}{b}+\frac{w^{2}}{c}<d$
(c) $\frac{u^{2}}{a}+\frac{v^{2}}{b}+\frac{w^{2}}{c}>d$
(d) None of these
$10 \times 1=10$

## UNTI-I

2. (a) Show that the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are coplanar only if $\overline{\mathrm{a}}+\overline{\mathrm{b}}, \overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{c}}+\overline{\mathrm{a}}$ are coplanar.
(b) If $\overline{\mathrm{a}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}, \overline{\mathrm{d}}=\overline{\mathrm{i}}+\overline{\mathrm{k}}$ find :
(i) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{d}})$
(ii) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})$.
(c) Prove that the necessary and sufficient condition for $f(t)$ to have constant magnitude is $\overline{\mathrm{f}} \circ \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}=0$.
3. (p) If $\overline{\mathrm{A}}=\mathrm{x}^{2} \mathrm{yz} \overline{\mathrm{i}}-2 x z^{3} \overline{\mathrm{j}}+x z^{2} \overline{\mathrm{k}}$ and $\overline{\mathrm{B}}=2 \mathrm{z} \overline{\mathrm{i}}+y \overline{\mathrm{j}}-\mathrm{x}^{2} \overline{\mathrm{k}}$ find $\frac{\partial^{2}}{\partial \mathrm{x} \cdot \partial \mathrm{y}}(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})$ at $(1,0,-2)$.
(q) Prove that:

$$
\begin{equation*}
\overline{\mathrm{i}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{i}})+\overline{\mathrm{j}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{j}})+\overline{\mathrm{k}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{k}})=2 \overline{\mathrm{a}} \tag{3}
\end{equation*}
$$

(r) Prove that :
(i) $\int \overline{\mathrm{f}} \cdot \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}} \mathrm{dt}=\frac{1}{2} \overline{\mathrm{f}}^{2}+\mathrm{c}$
(ii) $\int \overline{\mathrm{f}} \times \frac{\mathrm{d}^{2} \overline{\mathrm{f}}}{\mathrm{dt}^{2}} \mathrm{dt}=\overline{\mathrm{f}} \times \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}+\overline{\mathrm{c}}$,
where $\bar{c}$ is constant.

## UNIT-II

4. (a) State and prove Serret-Frenet formulae.
(b) Find the radii of curvature and torsion of the helix $x=a \cos \theta, y=a \sin \theta$, $\mathrm{z}=a \tan \alpha$, where $\alpha$ is constant.
5. (p) If the tangent and binormal at a point of a curve makes angles $\theta$ and $\phi$ respectively with fixed direction. Show that :

$$
\frac{\sin \theta}{\sin \phi} \frac{d \theta}{d \phi}=-\frac{k}{\tau}
$$

(q) Prove that :

$$
3 \|_{\left[\overline{\mathrm{b}}^{\prime}, \overline{\mathrm{b}}^{\prime \prime}, \overline{\mathrm{b}}^{\prime \prime \prime}\right]=\tau^{3}\left(\mathrm{k}^{\prime} \tau-\mathrm{k} \tau^{\prime}\right)=\tau^{5}\left(\frac{\mathrm{k}}{\tau}\right)^{\prime}, ~\left({ }^{\prime}\right)}
$$

## UNIT-III

6. (a) Compute the line integral $\int_{\mathrm{C}} \mathrm{y}^{2} \mathrm{dx}-\mathrm{x}^{2} \mathrm{dy}$, about the triangle whose vertices are $(1,0)$, $(0,1)$ and $(-1,0)$.
(b) Prove that $\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}$ is irrotational. Find the values of n when it is solenoidal. $3+2$
7. (p) Find the constants $a, b$, $c$ so that $\bar{f}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$ is irrotational.
(q) Let R be the closed bounded region in the xy-plane whose boundary is a simple closed curve C which may cuts by any line parallel to the coordinate axes in at most two points. Let $\mathrm{M}(\mathrm{x}, \mathrm{y})$ and $\mathrm{N}(\mathrm{x}, \mathrm{y})$ be functions that are continuous and have continuous partial derivatives $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ in $R$. Then prove that:

$$
\begin{equation*}
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{C} M d x+N d y \tag{5}
\end{equation*}
$$

## UNIT—IV

8. (a) Find the equation of a sphere which passes through the origin and intercepts lengths $a, b$ and $c$ on the axes respectively.
(b) State and prove the condition for the orthogonality of two spheres. $1+4$
9. (p) Find the equation of a sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ is a great circle.
(q) Find the equation of the sphere which passes through the points $(1,-3,4),(1,-5,2)$ and $(1,-3,0)$ and whose centre lies on the pane $x+y+z=0$.

## UNIT-V

10. (a) Find the equation of a cone whose vertex is the point ( $\alpha, \beta, \gamma$ ) and whose guiding curve a conic in the xy-plane.
(b) Find the equation of right circular cone whose vertex is $(2,-3,5)$, axis makes equal angles with the coordinate axes and semi vertical angle is $30^{\circ}$.
11. (p) Prove that every homogeneous equation of second degree in $x, y$ and $z$ represents a cone whose vertex is at the origin.
(q) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$.
