B.Sc. (Part–I) Semester–II (OLD) Examination

MATHEMATICS

(Vector Analysis & Solid Geometry)

Paper - IV

Time	: Thre	[Maximum Marks: 60									
Note	-	(1)	Question No. 1 is compulsory. A	ttemp	ot it once only.						
	31	(2)	Attempt one question from each unit.								
1.	(1)	Let a	\overline{b} and \overline{b} be any two non-zero vector	ors th	en \overline{a} and \overline{b} are parallel if :						
		(a)	$\overline{\mathbf{a}} + \overline{\mathbf{b}} = 1$	(b)	$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = 0$						
		(c)	\overline{a} . $\overline{b} = 0$	(d)	ā. b. 1	1					
	(2)	Let a	\overline{b} and \overline{b} be any two non-zero vector	ors th	en \overline{a} and \overline{b} are orthogonal	liff:					
		(a)	$\overline{a} + \overline{b} = 1$	(b)	$\overline{a} \times \overline{b} = 0$						
		(c)	$\overline{a} \cdot \overline{b} = 0$	(d)	$\overline{a} \cdot \overline{b} = 1$	1					
	(3)	If r =	$\overline{r}(s)$ is equation of space curve then curvature is equal to :								
		(a)	$\frac{ \dot{\mathbf{r}} \ \ddot{\mathbf{r}} \ \ddot{\mathbf{r}} }{ \dot{\mathbf{r}} \times \ddot{\mathbf{r}} ^2}$	(b)	r ř						
		(c)	$\frac{\dot{\mathbf{r}} \times \ddot{\mathbf{r}}}{ \dot{\mathbf{r}} \times \ddot{\mathbf{r}} }$ 3	(d)	$\frac{ \dot{\mathbf{r}}\times\dot{\mathbf{r}} }{ \dot{\mathbf{r}} ^3}$	1					
	(4)	The	Darboux vector \overline{d} can be written a	as :							
		(a)	$\overline{d} = y\overline{t} + x\overline{b}$	(b)	$\overline{d} = y\overline{t} - x\overline{b}$						
		(c)	$\overline{\mathbf{d}} = \mathbf{y}\overline{\mathbf{t}} + \overline{\mathbf{b}}$	(d)	None	1					
(5) If \overline{f} and \overline{g} are irrotational then is solenoidal.											
		(a)	$\overline{\mathbf{f}} \times \overline{\mathbf{g}}$	(b)	\overline{f} . \overline{g}						
		(c)	\overline{f} ² \overline{g}	(d)	None	1					
	(6)	Ave	ctor \overline{f} is irrotational if:								
		(a)	grad $\bar{f} = 0$	(b)	$\operatorname{div} \overline{\mathbf{f}} = 0$						
		(c)	curl $\bar{f} = 0$	(d)	None	1					
	(7)	The	curve of intersection of two spher	.:							
		(a)	Circle	(b)	Sphere	1					
		(c)	Plane	(d)	Cone 3	1					
(8) It a plane touches a sphere, the length of the perpendicular from the centre of											
		equa	Radius	(h)	Diameter						
		(u) (c)	Chord	(d)	None	1					
						_					

	(9)	The equation of a cone with vertex at the origin is									
		(a)	Homogeneous	(b)	Non-homogeneous						
		(c)	Both (a) and (b)	(d)	None	1					
	(10)) Every section of a right circular cone by a plane perpendicular to its axis is a :									
		(a)	Sphere	(b)	Cone						
		(c)	Cylinder	(d)	Circle	1					
	UNIT-I										
2.	(a)	Prov	re that :								
			$\overline{i} \times (\overline{a} \times \overline{i}) + \overline{j} \times (\overline{a} \times \overline{j}) + \overline{k} \times (\overline{a} \times \overline{k})$	$=2\overline{a}$		5					
	(b)	Prov	re that :								
			$(\overline{a} \times \overline{b}).(\overline{b} \times \overline{c}) \times (\overline{c} \times \overline{a}) = (\overline{a} \overline{b} \overline{c})^2$		3	5					
3.	(p)	If \overline{f}	and \overline{g} are vector function of t, the	en :							
			$\frac{\mathrm{d}}{\mathrm{dt}}(\overline{\mathrm{f}}.\overline{\mathrm{g}}) = \overline{\mathrm{f}}.\frac{\mathrm{d}\overline{\mathrm{g}}}{\mathrm{dt}} + \frac{\mathrm{d}\overline{\mathrm{f}}}{\mathrm{dt}}.\overline{\mathrm{g}}.$			5					
	(q)	If $\overline{r}(t)$	$t) = 5t^2 \cdot \overline{i} + t\overline{j} - t^3 \overline{k}$								
			Prove that $\int_{1}^{2} \overline{\varepsilon} \times \frac{d^{2}\overline{\varepsilon}}{dt^{2}} dt$ $= -14\overline{i} + 75\overline{j} - 15\overline{k}$	31	1	5					

UNIT-II

- 4. (a) Show that the tangent at any point on the curve whose equations are x = 3u, $y = 3u^2$, $z = 2u^3$ makes a constant angle with the line y = z x = 0. 5
 - (b) Prove that the necessary and sufficient condition that a curve lies in a plane is $\tau = 0$. 5
- 5. (p) If the tangent and the binormal at a point of a curve make angles θ , ϕ respectively with a fixed direction then show that

$$\frac{\sin\theta}{\sin\phi}\frac{d\theta}{d\phi} = \frac{-k}{\tau}$$

(q) Darboux vector \overline{d} is constant iff k and τ are constants and that \overline{d} has a fixed direction iff $\frac{k}{\tau}$ is constant.

UNIT-III

6. (a) Define directional derivative of ϕ and find the directional derivative of $\phi = xy^2 + yz^2$ at point (z, -1, 1) in the direction of the vector $\overline{i} + 2\overline{j} + 2\overline{x}$. 1+5

(b) If
$$\overline{v} = \overline{w} \times \overline{\varepsilon}$$
 then prove that $\overline{w} = \frac{1}{2} \operatorname{curl} \overline{v}$ where \overline{w} is a constant vector. 4

2

- Computer the line integral $\int y^2 dx x^2 dy$, about the triangle whose vertices are (1, 0)(0, 1)7. (p) and (-1, 0). 5
 - (q) Find the total work done in moving a particle in a force field given by

$$\overline{F} = 2xy\overline{i} + 3z\overline{j} - 6x\overline{k} \text{ along the curve :}$$

$$x = t^2 - 1, y = t, z = t^3 \text{ from } t = 0 \text{ to } t = 1.$$
5

UNIT-IV

- 8. (a) Find the co-ordinates of the centre and the radius of the circle x + 2y + 2z = 15, $x^2 + y + z^2 2y 4z = 11$
 - Show that the equation of the sphere through the four points (0, 0, 0) (-a, b, c), (a, -b, c),

(a, b, -c) is
$$\frac{x^2 + y^2 + z^2}{a^2 + b^2 + c^2} - \frac{x}{a} - \frac{y}{b} - \frac{z}{c} = 0$$
 and determine its radius. 5

9. (p) Find the equation of the sphere that passes through the circle :

$$x^2 + y^2 + z^2 - 2x + 3y - 4z + 6 = 0$$
, $3x - 4y + 5z - 15 = 0$ and cuts the sphere $x^2 + y^2 + z^2 + 2x + ay - 6z + 11 = 0$ orthogonally.

Find the equation of the sphere which touches the sphere : (q)

$$x^{2} + y^{2} + z^{2} + 2x - 6y + 1 = 0$$
 at (1, 2, -2) and passes through the point (1, -1, 0). 5
UNIT-V

10. (a) Find the equation of the cone whose vertex is the point (1, 0, 1) and whose guiding curve is $z = 0, x^2 + y^2 = 4.$ 5

Show that the equation of a cone with vertex at the origin is homogenous. (b)

Find the equation of the right circular cylinder which passes through the circle : 11. (p)

$$x^{2} + y^{2} + z^{2} = 9, x - y + z = 3.$$
 5

Find the equation of the right circular cylinder of radius z and whose axis is the line : (q)

$$\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}.$$
 5

317

5