## B.Sc. (Part-I) Semester-II (OLD) Examination <br> MATHEMATICS <br> (Vector Analysis \& Solid Geometry) <br> Paper - IV

Time : Three Hours]
[Maximum Marks: 60
Note :- (1) Question No. 1 is compulsory. Attempt it once only.
(2) Attempt one question from each unit.

1. (1) Let $\bar{a}$ and $\overline{\mathrm{b}}$ be any two non-zero vectors then $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are parallel if:
(a) $\overline{\mathrm{a}}+\overline{\mathrm{b}}=1$
(b) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
(c) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
(d) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \cdot 1$

1
(2) Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ be any two non-zero vectors then $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are orthogonal iff:
(a) $\overline{\mathrm{a}}+\overline{\mathrm{b}}=1$
(b) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
(c) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
(d) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$

1
(3) If $\overline{\mathrm{r}}=\overline{\mathrm{r}}(\mathrm{s})$ is equation of space curve then curvature is equal to:
(a) $\frac{|\dot{\mathrm{r}} \ddot{\mathrm{r}} \dddot{\mathrm{r}}|}{|\dot{\mathrm{r}} \times \ddot{\mathrm{r}}|^{2}}$
(b) $\frac{r}{|\dot{r}|}$
(c) $\frac{\dot{\mathrm{r}} \times \ddot{\mathrm{r}}}{|\dot{\mathrm{r}} \times \ddot{\mathrm{r}}|}$
(d) $\frac{|\dot{\mathrm{r}} \times \ddot{\mathrm{r}}|}{|\dot{\mathrm{r}}|^{3}}$
(4) The Darboux vector $\bar{d}$ can be written as :
(a) $\bar{d}=y \bar{t}+x \bar{b}$
(b) $\bar{d}=y \bar{t}-x \bar{b}$
(c) $\overline{\mathrm{d}}=\mathrm{y} \overline{\mathrm{t}}+\overline{\mathrm{b}}$
(d) None
(5) If $\bar{f}$ and $\overline{\mathrm{g}}$ are irrotational then $\qquad$ is solenoidal.
(a) $\overline{\mathrm{f}} \times \overline{\mathrm{g}}$
(b) $\overline{\mathrm{f}} . \overline{\mathrm{g}}$
(c) $\overline{\mathrm{f}} \cdot{ }^{2} \overline{\mathrm{~g}}$
(d) None
(6) A vector $\overline{\mathrm{f}}$ is irrotational if:
(a) $\operatorname{grad} \overline{\mathrm{f}}=0$
(b) $\operatorname{div} \overline{\mathrm{f}}=0$
(c) $\operatorname{curl} \overline{\mathrm{f}}=0$
(d) None
(7) The curve of intersection of two spheres is a :
(a) Circle
(b) Sphere
(c) Plane
(d) Cone

1
(8) If a plane touches a sphere, the length of the perpendicular from the centre of the sphere is equal to its:
(a) Radius
(b) Diameter
(c) Chord
(d) None
(9) The equation of a cone with vertex at the origin is
(a) Homogeneous
(b) Non-homogeneous
(c) Both (a) and (b)
(d) None
(10) Every section of a right circular cone by a plane perpendicular to its axis is a:
(a) Sphere
(b) Cone
(c) Cylinder
(d) Circle

## UNIT-I

2. (a) Prove that:

$$
\overline{\mathrm{i}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{i}})+\overline{\mathrm{j}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{j}})+\overline{\mathrm{k}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{k}})=2 \overline{\mathrm{a}} .
$$

5
(b) Prove that:

$$
(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c}) \times(\bar{c} \times \bar{a})=(\bar{a} \bar{b} \bar{c})^{2} .
$$

3. (p) If $\bar{f}$ and $\bar{g}$ are vector function oft, then:

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overline{\mathrm{f}} \cdot \overline{\mathrm{~g}})=\overline{\mathrm{f}} \cdot \frac{\mathrm{~d} \overline{\mathrm{~g}}}{\mathrm{dt}}+\frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}} \cdot \overline{\mathrm{~g}} .
$$

(q) If $\overline{\mathrm{r}}(\mathrm{t})=5 \mathrm{t}^{2} \cdot \overline{\mathrm{i}}+\mathrm{t} \overline{\mathrm{j}}-\mathrm{t}^{3} \overline{\mathrm{k}}$

$$
\begin{aligned}
& \text { Prove that } \int_{1}^{2} \frac{2}{\varepsilon} \times \frac{\mathrm{d}^{2} \bar{\varepsilon}}{\mathrm{dt}^{2}} \mathrm{dt} \\
& \\
& =-14 \overline{\mathrm{i}}+75 \overline{\mathrm{j}}-15 \overline{\mathrm{k}}
\end{aligned}
$$

UNIT-II
4. (a) Show that the tangent at any point on the curve whose equations are $x=3 u, y=3 u^{2}, z=2 u^{3}$ makes a constant angle with the line $\mathrm{y}=\mathrm{z}-\mathrm{x}=0$.
(b) Prove that the necessary and sufficient condition that a curve lies in a plane is $\tau=0 . \quad 5$
5. (p) If the tangent and the binormal at a point of a curve make angles $\theta, \phi$ respectively with a fixed direction then show that

$$
\frac{\sin \theta}{\sin \phi} \frac{\mathrm{d} \theta}{\mathrm{~d} \phi}=\frac{-\mathrm{k}}{\tau}
$$

(q) Darboux vector $\overline{\mathrm{d}}$ is constant iff k and $\tau$ are constants and that $\overline{\mathrm{d}}$ has a fixed direction iff $\frac{\mathrm{k}}{\tau}$ is constant.

## UNIT-III

6. (a) Define directional derivative of $\phi$ and find the directional derivative of $\phi=x y^{2}+y z^{2}$ at point ( $\mathrm{z},-1,1$ ) in the direction of the vector $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+2 \overline{\mathrm{x}}$.
(b) If $\overline{\mathrm{v}}=\overline{\mathrm{w}} \times \bar{\varepsilon}$ then prove that $\overline{\mathrm{w}}=\frac{1}{2} \operatorname{curl} \overline{\mathrm{v}}$ where $\overline{\mathrm{w}}$ is a constant vector.
7. (p) Computer the line integral $\int_{\mathrm{e}} y^{2} d x-x^{2} d y$, about the triangle whose vertices are $(1,0)(0,1)$ and ( $-1,0$ ).
(q) Find the total work done in moving a particle in a force field given by

$$
\begin{align*}
& \overline{\mathrm{F}}=2 \mathrm{xy} \overline{\mathrm{i}}+3 \mathrm{z} \overline{\mathrm{j}}-6 \mathrm{x} \overline{\mathrm{k}} \text { along the curve : } \\
& \mathrm{x}=\mathrm{t}^{2}-1, \mathrm{y}=\mathrm{t}, \mathrm{z}=\mathrm{t}^{3} \text { from } \mathrm{t}=0 \text { to } \mathrm{t}=1 . \tag{5}
\end{align*}
$$

## UNIT-IV

8. (a) Find the co-ordinates of the centre and the radius of the circle $x+2 y+2 z=15, x^{2}+y+z^{2}-$ $2 y-4 z=11$
(b) Show that the equation of the sphere through the four points $(0,0,0)(-a, b, c),(a,-b, c)$, $(a, b,-c)$ is $\frac{x^{2}+y^{2}+z^{2}}{a^{2}+b^{2}+c^{2}}-\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0$ and determine its radius.
9. (p) Find the equation of the sphere that passes through the circle :
$x^{2}+y^{2}+z^{2}-2 x+3 y-4 z+6=0,3 x-4 y+5 z-15=0$ and cuts the sphere $x^{2}+y^{2}+z^{2}+$ $2 x+a y-6 z+11=0$ orthogonally.
(q) Find the equation of the sphere which touches the sphere :

$$
\begin{gathered}
\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{x}-6 \mathrm{y}+1=0 \text { at }(1,2,-2) \text { and passes through the point }(1,-1,0) . \\
\text { UNIT-V }
\end{gathered}
$$

10. (a) Find the equation of the cone whose vertex is the point $(1,0,1)$ and whose guiding curve is $\mathrm{z}=0, \mathrm{x}^{2}+\mathrm{y}^{2}=4$.
(b) Show that the equation of a cone with vertex at the origin is homogenous.
11. (p) Find the equation of the right circular cylinder which passes through the circle :

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=9, x-y+z=3 \tag{5}
\end{equation*}
$$

(q) Find the equation of the right circular cylinder of radius $z$ and whose axis is the line :

$$
\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}
$$

