AD-4612

10

B.Sc. Part-I (Semester-II) (CBCS) Examination

MATHEMATICS (DSC-III)

(Ordinary Differential Equations)

Paper-III

[Maximum Marks : 60

N. B. :— Question No. **1** is compulsory, attempt it once only.

1. Choose correct alternative :

Time : 3 Hours]

21

Cho	Choose correct alternative :					
(i)	The	order and degree of differential equ	ation	$\left(\frac{d^2y}{dx^2}\right)^2 + 2\left(\frac{dy}{dx}\right)^3 + 3y = x^2 - e^{3x}$ is:		
	(a)	Order 1, degree 3	(b)	Order 2, degree 3		
	(c)	Order 2, degree 2	(d)	Order 2, degree 1		
(ii)	Integrating factor of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$ is :					
	(a)	Х	(b)	log x xe ^x		
	(c)	e ^x	(d)	xe ^x		
(iii)) The orthogonal trajectories of the family of semi-cubical parabolas $ay^2 = x^3$ is :					
	(a)	$x^2 + 3y^2 = c$	(b)	$2x^3 - y^2 = c$		
	(c)	$2x^2 - 3y^2 = c$	(d)	$2x^2 + 3y^2 = c$		
(iv)) General solution of the D. E. $sin(Px - y) = p$ by using Clairaut's form is :					
	(a)	$y = cx - sin^{-1}c$	(b)	$y = cx + \sin^{-1}c$		
	(c)	y = cx - sin c	(d)	y = cx + sin c		
(v)) The roots of the DE $(D^2 - 4D + 13)^2$ y = 0 are :					
	(a)	Equal and real	(b)	Distinct and real		
	(c)	Complex and repeated	(d)	None of these		
(vi) Particular Integral of $\frac{1}{P(D^2)}$ sin (ax + b) is :						
((a)	$\frac{1}{P(-a^2)}\sin(ax-b)$	(b)	$\frac{1}{P(-a^2)}\sin(ax+b)$		
	(c)	$\frac{1}{P(a^2)} \sin(ax - b)$	(d)	$\frac{1}{P(a^2)}\sin(ax+b)$		

LT-961

1

- (vii) Let y_1 and y_2 be any two solutions of the DE y'' + Py' + 9y = 0, $p, q \in C^\circ$. If $w(y_1, y_2, x) = 0$ then
 - (a) y_1 is linearly dependent and y_2 is linearly independent
 - (b) y_1 is linearly independent and y_2 is linearly dependent
 - (c) y_1 and y_2 are linearly independent
 - (d) y_1 and y_2 are linearly dependent

(viii) Particular solution of the DE y'' + Py' + Qy = 0 is $y = e^x$ if

Solution (a)
$$P + xQ = 0$$

(b) $1 + P + Q = 0$
(c) $1 - P + Q = 0$
(d) $m^2 + mP + Q = 0$

(ix) Uranium disintegrates at a rate proportional to the amount present at any instant. If M_1 and

 $M_1/2$ grams of uranium are present at times T_1 and T_2 respectively, then the half of uranium is : (a) $\frac{1}{2}(T_2 - T_1)$ (b) $T_2 - T_1$

(c)
$$\frac{1}{3}(T_2 - T_1)$$
 (d) $2T_2 - T1$

(x) The temperature of water initially is 100°C and that of surrounding is 20°C. If the water cools down to 60°C in first 20 minutes, then the time required to fall temperature up to 30°C is :

(a) 64 min (b) 62 min

(c) 60 min (d) 58 min

UNIT—I

2. (a) Show that :

 $\cos x (\cos x - \sin \alpha \sin y) dx + \cos y (\cos y - \sin \alpha \sin x) dy = 0$ is exact and solve. 6

OR

(b) Solve the DE
$$x^2y - x^3 \frac{dy}{dx} = y^4 \cos x.$$
 6

(c) Define primitive of a differential equation. Also, find the DE associated with the primitive
$$y = A \cos mx + B \sin mx$$
 where A and B being arbitrary constants. 4

OR

(d) Show that the differential equation $x(x - y)dy + y^2dx = 0$ is homogeneous and then solve. 1+3

UNIT—II

- 3. (a) Solve $3x^4p^2 xp y = 0$.
- OR

6

(b) Prove that the system of confocal conics $\frac{x^2}{a^2 + ?} + \frac{y^2}{b^2 + ?} = 1$ is self-orthogonal.	6					
(c) Explain Clairaut's equation and solve sin $px \cos y = \cos px \sin y + P$.	2+2					
OR						
(d) Solve $P^2 + 2Py \cot x = y^2$.	4					
UNIT—III						
4. (a) Solve $\frac{d^2y}{dx^2} + a^2y = x \cos ax$.	6					
OR						
(b) Solve the DE :						
$x^{3} \frac{d^{3}y}{dx^{3}} + 2x^{2} \frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right).$	6					
(c) Solve $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$	4					
OR						
(d) Solve $(D^3 - 3D^2 + 9D - 27)y = \cos 3x$.	4					
UNITIV						

5. (a) Solve
$$y'' - \frac{2}{x^2}y' + \left(1 + \frac{2}{x^2}\right)y = xe^x$$
.

OR

- (b) Solve the DE $(1 x^2) y'' xy' a^2 y = 0$ of which $y = ce^{a \sin^{-1} x}$ is an integral. 6
- (c) If y_1 and y_2 are linearly dependent differentiable functions then show that their Wronskian vanishes identically. 4

OR

(d) Solve the DE $y'' + n^2 y = cosec nx$ by using variation of parameters. 4

UNIT—V

6. (a) The equation of an LR circuit is given by $L \frac{dI}{dt} + RI = \sin 10 t$. If I = 0 at t = 0, find the expression for I in terms of t.

OR

- (b) A man deposits a sum in a bank at 6 percent Compound interest. The compounding is continuous. How much shall he deposit if he will get Rs. 50000 at the end of 4 years ?
- (c) If 30% of a radioactive substance disappeared in 10 days, how long will it take for 90% of it to disappear.

OR

(d) Water at temperature 100°C cools in 10 minutes to 88°C in a room of temperature 25°C. Find the temperature of water after 20 minutes.

3

25