B.Sc. Part-II (Semester-III) Examination
 MATHEMATICS

(Advanced Calculus)
Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Q. No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :-
(1) A sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$ is convergent if and only if \qquad ?
(a) It is monotonic sequence
(b) It is bounded sequence
(c) It is monotonic and bounded
(d) It is monotonic and unbounded
(2) The geometric series $\sum \mathrm{ar}^{\mathrm{n}-1}$ is convergent if \qquad .
(a) $|r|<1$
(b) $|\mathrm{r}|>1$
(c) $|\mathrm{r}|=1$
(d) $|\mathrm{r}|=0$
(3) A sequence is a function in which domain set is \qquad .
(a) Complex number
(b) Real number
(c) Integers
(d) Natural number
(4) The series $\sum \frac{1}{\mathrm{n}^{3 / 2}}$ is \qquad .
(a) Convergent
(b) Divergent
(c) Neither convergent nor divergent
(d) None of these
(5) A function $f(p)$ is said to have local minimum at p_{o} in D if it satisfies the condition
\qquad —.
(a) $\mathrm{f}(\mathrm{p}) \leq \mathrm{f}\left(\mathrm{p}_{\mathrm{o}}\right) \forall \mathrm{p} \in \mathrm{D}$
(b) $\mathrm{f}(\mathrm{p}) \geq \mathrm{f}\left(\mathrm{p}_{\mathrm{o}}\right) \not \forall \mathrm{p} \in \mathrm{D}$
(c) $\mathrm{f}(\mathrm{p}) \leq \mathrm{f}\left(\mathrm{p}_{\mathrm{o}}\right) \not \forall \mathrm{p} \in \mathrm{N} \delta\left(\mathrm{p}_{\mathrm{o}}\right)$
(d) $f(p) \geq f\left(p_{o}\right) \nLeftarrow p \in N \delta\left(p_{o}\right)$
(6) If $u=x+y$ and $v=x-y$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ is
(a) -1
(b) -2
(c) 1
(d) 2
(7) The value of $\lim _{x \rightarrow 2}\left\{\lim _{y \rightarrow 1}(x y-3 x+4)\right\}$ is \qquad .
(a) 0
(b) 1
(c) 2
(d) 3
(8) The necessary condition for maxima and minima of $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ is :
(a) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \neq 0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0} \mathrm{y}_{0}\right) \neq 0$
(b) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \neq 0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$
(c) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \neq 0$
(d) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$
(9) Stoke's theorem is the connection between :
(a) Line integral and Double integral
(b) Line integral and Surface integral
(c) Volume integral and Surface integral
(d) Volume integral and Double integral
(10) The value of $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} d x d y d z$ is :
(a) 2
(b) 4
(c) 6
(d) 8
$10 \times 1=10$

UNIT-I

2. (a) Prove that limit of sequence if it exists then it is unique.
(b) Show that $\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{\frac{1}{n}}=e$.
(c) Prove that every convergent sequence of real numbers is a Cauchy sequence.
3. (p) Show that the sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle$; where $\mathrm{s}_{\mathrm{n}}=\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$ is convergent and its limit lies in between 2 and 3 .
(q) Show that the sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle$ defined by $\mathrm{s}_{\mathrm{n}}=\frac{1}{3+1}+\frac{1}{3^{2}+1}+\ldots . .+\frac{1}{3^{\mathrm{n}}+1}$ is monotonic and bounded.

UNIT-II

4. (a) Prove that the series $\sum \frac{1}{\mathrm{n}^{\mathrm{p}}}$ converges for $\mathrm{p}>1$ and diverges for $\mathrm{p} \leq 1$.
(b) Test the convergence of the series $\sum \frac{n^{3}+a}{2^{n}+a}$.
5. (p) Let $\sum \mathrm{x}_{\mathrm{n}}$ be a positive term series such that $\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{x}_{\mathrm{n}+1}}{\mathrm{x}_{\mathrm{n}}}=l$, then prove that the series $\sum \mathrm{x}_{\mathrm{n}}$ converges if $l<1$ and diverges if $l>1$.
(q) Test the convergence of the series $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{n}}{\mathrm{n}^{2}+1}$ by using Cauchy's integral test.

UNIT-III

6. (a) Let real valued functions f and g be continuous in an open set $D \subseteq R^{2}$ then prove that $\mathrm{f}-\mathrm{g}$ is continuous in D .
(b) Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{y}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}{\mathrm{y}^{2}+\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}$; show that f has limit 0 as $(\mathrm{x}, \mathrm{y}) \rightarrow(0,0)$ on the ray $\mathrm{x}=\mathrm{at} ; \mathrm{y}=\mathrm{bt}$, but f does not have limit 0 as $(\mathrm{x}, \mathrm{y}) \rightarrow(0,0)$.
(c) Obtain the expansion of $f(x, y)=x^{2}-y^{2}+3 x y$ at the point $(1,2)$.
7. (p) State and prove uniqueness of limit of function of two variables.
(q) Prove that the function $f(x, y)=x-y$ is continuous for all $(x, y) \in R^{2}$.

UNIT-IV

8. (a) Let $f(x, y)$ be defined in an open region D and it has a local maximum or local minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. If the partial derivatives f_{x} and f_{y} exist at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ then prove that $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$.
(b) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane $\mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=9$.
9. (p) A rectangular box open at the top is to have a volume of 32 cc . Find the dimensions of the box requiring least material for its construction.
(q) If $x u=y z, y v=x z$ and $z w=x y$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{\bar{e}^{y}}{y} d y . d x$.
(b) Evaluate $\iiint_{\mathrm{V}}(2 \mathrm{x}+\mathrm{y}) \mathrm{dx} \mathrm{dy} \mathrm{dz}$; where V is the closed region bounded by the cylinder $\mathrm{z}=4-\mathrm{x}^{2}$ and the planes $\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=0, \mathrm{y}=2 ; \mathrm{z}=0$.
11. (p) Verify Gauss-Divergence theorem for

$$
\overline{\mathrm{f}}=\left(\mathrm{x}^{2}-\mathrm{yz}\right) \overline{\mathrm{i}}+\left(\mathrm{y}^{2}-\mathrm{zx}\right) \overline{\mathrm{j}}+\left(\mathrm{z}^{2}-\mathrm{xy}\right) \overline{\mathrm{k}} \quad \text { taken over }
$$

the rectangular parallelepiped $0 \leq \mathrm{x} \leq \mathrm{a}, 0 \leq \mathrm{y} \leq \mathrm{b} ; 0 \leq \mathrm{z} \leq \mathrm{c}$.
(q) Apply Stoke's theorem to evaluate

$$
\oint_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]
$$

where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0),(0,0,6)$.

