10

[Maximum Marks : 60

B.Sc. Part–I (Semester–I) (CBCS) Examination MATHEMATICS

(II) Differential and Integral Calculus

Time : Three Hours]

Q. No. 1 is compulsory. **Note :-** (1) Attempt **one** question from each unit. (2)Choose the correct alternative : 1. The function $f(x) = \tan x$ is discontinuous at : (1)(b) $x = (2n+1)\frac{\pi}{2}, n = 0, 1, 2, ...$ (a) $x = \frac{\pi}{2}$ only (c) $x = n\pi$ for all $n \in N$ (d) None of these (2) The function $y^2 = x$ is : (a) Single valued function (b) Multiple valued function (c) Even function (d) None of these The value of $\lim_{x\to 0} (1+x)^{y'_x}$ is : (3) (b) e^2 (a) e (c) 0 (d) 1 The function $f(x) = \begin{cases} \frac{\sin x}{x}; x \neq 0 \\ 1; x = 0 \end{cases}$ has: (4) Discontinuity at x = 0(a) Removable discontinuity at x = 0(b) Simple discontinuity at x = 0None of these (c) (d) (5) If $y = a^x$ then $y_n = ?$ (b) $a^{x}.(\log a)$ (a) a.a^x (d) None of these (c) $a^{x}.(\log a)^{n}$ (6) An expression of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ is known as an : indeterminant form (b) determinate form (a)

1

(7) For $f(x) = x^2$; $g(x) = x^3$ in [1, 3] then the value of 'c' by Cauchy's mean value theorem is :

(a)
$$\frac{6}{13}$$
 (b) $\frac{13}{6}$

(c) 0

(8) Expansion of the function e^x is :

(a)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

(c) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$

(9) If
$$I_n = \int \cos^n x dx$$
 then $I_n = \dots$

(a)
$$-\frac{1}{n}\cos^{n-1}x\sin x + \frac{n-1}{n}I_{n-2}$$

(c)
$$\frac{1}{n}\cos^{n+1}x\sin x + \frac{n+1}{n}I_{n+2}$$

$$\frac{10}{6}$$

(d) None of these

(b)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

(d) $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$
(b) $\frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$

(c)
$$\frac{1}{n}\cos^{n+1}x\sin x + \frac{n+1}{n}I_{n+2}$$
 (d) None of these
(10) The value of $\int_0^a \frac{x^4 dx}{\sqrt{a^2 - x^2}}$ is :

(a)
$$\frac{3a^3\pi}{16}$$

(b) $\frac{3a^2\pi}{16}$
(c) $\frac{3a^4\pi}{16}$
(d) None of these

UNIT-I

2. (a) Define limit of a function and if
$$\lim_{x \to x_0} f(x) = A$$
 and $\lim_{x \to x_0} g(x) = B$ then prove that $\lim_{x \to x_0} [f(x) + g(x)] = A + B$ 6

(b) If
$$f(x) = \frac{|x-2|}{|x-2|} + 2x + 3$$
; $x \neq 2$. Is the $\lim_{x \to 2} f(x)$ exist? 4

OR

(c) Give E-S definition of limit. Using it
prove that
$$\lim_{x \to 2} (3x+5) = 11$$

(d) If $\lim_{x \to x_0} f(x)$ exist, then it is unique.

3.

UNIT-II

- Define uniform continuity and prove that any continuous function f defined on a closed interval 4. (a) [a, b] is uniformly continuous. 6
 - Using E–S definition of continuity show that the function $f(x) = x^2$ is continuous for all real (b) values of x. 4

OR

5. (c) If
$$f(x) = \begin{cases} \frac{\sin x}{x} ; x \neq 0 \\ 0 ; x = 0 \end{cases}$$

show that f(x) has removable discontinuity at x = 0.

(d) Using E–S definition of continuity show that the function f(x) = 7x-3 is continuous at x = 3.4~/ /

UNIT-III

6. (a) If
$$f(x)$$
 is differentiable at $x = x_0$ then prove that it is continuous at $x = x_0$.

(b) If $y = e^{ax} \cos(bx + c)$ then prove that $y_n = E^n e^{ax} \cos(bx + c + n\theta)$ where $E = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}\frac{b}{a}$. 6

OR

(c) If $y = \sin(m\sin^{-1}x)$ then prove that 7.

(i)
$$(1 - x^2)y_2 - xy_1 + m^2y = 0$$

(ii) $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 - m^2)y_n = 0.$ 5

(i)
$$\lim_{x \to \infty} \frac{\log x}{x^n}$$
 2

(ii)
$$\lim_{x \to 0} \frac{\tan x - x}{x^2 - \tan x}.$$
 3

UNIT-IV

8.	(a)	State and prove Lagrange's mean value theorem.	6
	(b)	Verify Rolle's theorem for the function $f(x) = e^{-x} \sin x$ in $[0, \pi]$.	4
		OR	
9.	(c)	If $f(x)$ and $g(x)$ are two functions such that :	6

9. (c) If
$$f(x)$$
 and $g(x)$ are two functions such that :

- (i) f(x) and g(x) are continuous in [a, b]
- f(x) and g(x) are differentiable in (a, b) and (ii)

$g'(x) \neq 0$ for $x \in (a, b)$. (iii)

Then there exist at least one point
$$c \in (a, b)$$
 such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

(d) Obtain the Taylor's series expansion for the function $f(x) = x^4 + x - 2$ at a = 1.

(

4

6

4

UNIT-V

10. (a) Integrate
$$\int \frac{(x^2 + 2x + 3)}{\sqrt{x^2 + x + 1}} dx$$
. 4

(b) If
$$I_n = \int \sec^n x \, dx$$
 then prove that $I_n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} I_{n-2}$.

11. (c) If
$$I_n = \int \sec^n x \, dx$$
 then prove that $I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$.

(d) Show that
$$\int_0^{\frac{\pi}{4}} \sin^4 x \, dx = \frac{(3\pi - 8)}{32}$$
.