B.Sc. Part-I (Semester-I) (CBCS) Examination
 MATHEMATICS

(II) Differential and Integral Calculus

Time : Three Hours]
[Maximum Marks : 60
Note :- (1) Q. No. 1 is compulsory.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(1) The function $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$ is discontinuous at :
(a) $x=\frac{\pi}{2}$ only
(b) $\mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n}=0,1,2, \ldots$
(c) $\mathrm{x}=\mathrm{n} \pi$ for all $\mathrm{n} \in \mathrm{N}$
(d) None of these
(2) The function $y^{2}=x$ is:
(a) Single valued function
(b) Multiple valued function
(c) Even function
(d) None of these
(3) The value of $\lim _{x \rightarrow 0}(1+x)^{1 / x}$ is:
(a) e
(b) e^{2}
(c) 0
(d) 1
(4) The function $f(x)=\left\{\begin{array}{c}\frac{\sin x}{x} ; x \neq 0 \\ 1 ; x=0\end{array}\right.$ has:
(a) Discontinuity at $\mathrm{x}=0$
(b) Removable discontinuity at $\mathrm{x}=0$
(c) Simple discontinuity at $\mathrm{x}=0$
(d) None of these
(5) If $y=a^{x}$ then $y_{n}=$?
(a) $a \cdot a^{x}$
(b) $\quad a^{x} \cdot(\log a)$
(c) $a^{x} \cdot(\log a)^{n}$
(d) None of these
(6) An expression of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ is known as an :
(a) indeterminant form
(b) determinate form
(c) indeterminate form
(d) None of these
(7) For $f(x)=x^{2} ; g(x)=x^{3}$ in [1,3] then the value of 'c' by Cauchy's mean value theorem is :
(a) $\frac{6}{13}$
(b) $\frac{13}{6}$
(c) 0
(d) None of these
(8) Expansion of the function e^{x} is :
(a) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots .$.
(b) $1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots .$.
(c) $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots .$.
(d) $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .$.
(9) If $I_{n}=\int \cos ^{n} x d x$ then $I_{n}=\ldots \ldots$
(a) $-\frac{1}{\mathrm{n}} \cos ^{\mathrm{n}-1} \mathrm{x} \sin \mathrm{x}+\frac{\mathrm{n}-1}{\mathrm{n}} \mathrm{I}_{\mathrm{n}-2}$
(b) $\frac{1}{\mathrm{n}} \cos ^{\mathrm{n}-1} \mathrm{x} \sin \mathrm{x}+\frac{\mathrm{n}-1}{\mathrm{n}} \mathrm{I}_{\mathrm{n}-2}$
(c) $\frac{1}{\mathrm{n}} \cos ^{\mathrm{n}+1} \mathrm{x} \sin \mathrm{x}+\frac{\mathrm{n}+1}{\mathrm{n}} \mathrm{I}_{\mathrm{n}+2}$
(d) None of these
(10) The value of $\int_{0}^{a} \frac{x^{4} d x}{\sqrt{a^{2}-x^{2}}}$ is:
(a) $\frac{3 a^{3} \pi}{16}$
(b) $\frac{3 a^{2} \pi}{16}$
(c) $\frac{3 a^{4} \pi}{16}$
(d) None of these

UNIT-I

2. (a) Define limit of a function and if $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} g(x)=B$ then prove that

$$
\lim _{x \rightarrow x_{0}}[f(x)+g(x)]=A+B
$$

(b) If $f(x)=\frac{|x-2|}{x-2}+2 x+3 ; x \neq 2$. Is the $\lim _{x \rightarrow 2} f(x)$ exist ?

OR
3. (c) Give E-S definition of limit. Using it
prove that $\lim _{x \rightarrow 2}(3 x+5)=11$
(d) If $\lim _{x \rightarrow x_{0}} f(x)$ exist, then it is unique.

UNIT-II

4. (a) Define uniform continuity and prove that any continuous function f defined on a closed interval [a, b] is uniformly continuous.
(b) Using E-S definition of continuity show that the function $f(x)=x^{2}$ is continuous for all real values of x .

OR

5. (c) If $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x} ; x \neq 0 \\ 0 ; x=0\end{array}\right.$
show that $\mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=0$.
(d) Using E-S definition of continuity show that the function $f(x)=7 x-3$ is continuous at $x=3.4$

UNIT-III

6. (a) If $f(x)$ is differentiable at $x=x_{0}$ then prove that it is continuous at $x=x_{0}$.
(b) If $y=e^{a x} \cos (b x+c)$ then prove that $y_{n}=E^{n} e^{a x} \cdot \cos (b x+c+n \theta)$ where $E=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1} \frac{\mathrm{~b}}{\mathrm{a}}$.

OR

7. (c) If $y=\sin \left(\operatorname{msin}^{-1} x\right)$ then prove that
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}-m^{2}\right) y_{n}=0$.
(d) Evaluate :
(i) $\lim _{x \rightarrow \infty} \frac{\log x}{x^{n}}$
(ii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\tan \mathrm{x}-\mathrm{x}}{\mathrm{x}^{2}-\tan \mathrm{x}}$.
8. (a) State and prove Lagrange's mean value theorem.
(b) Verify Rolle's theorem for the function $f(x)=e^{-x} \sin x$ in $[0, \pi]$.

OR

9. (c) If $f(x)$ and $g(x)$ are two functions such that:
(i) $f(x)$ and $g(x)$ are continuous in [a, b]
(ii) $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are differentiable in (a, b) and
(iii) $g^{\prime}(x) \neq 0$ for $x \in(a, b)$.

Then there exist atleast one point $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\frac{\mathrm{f}^{\prime}(\mathrm{c})}{\mathrm{g}^{\prime}(\mathrm{c})}=\frac{\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})}{\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{a})}$.
(d) Obtain the Taylor's series expansion for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}-2$ at $\mathrm{a}=1$.

UNIT-V

10. (a) Integrate $\int \frac{\left(x^{2}+2 x+3\right)}{\sqrt{x^{2}+x+1}} d x$.
(b) If $I_{n}=\int \sec ^{n} x d x$ then prove that $I_{n}=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} I_{n-2}$.

OR
11. (c) If $I_{n}=\int \sec ^{n} x d x$ then prove that $I_{n}=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} I_{n-2}$.
(d) Show that $\int_{0}^{\frac{y}{4}} \sin ^{4} x d x=\frac{(3 \pi-8)}{32}$.

