B.Sc. Part-II (Semester-IV) Examination
 MATHEMATICS

CLASSICAL MECHANICS

PAPER-VIII

Time : Three Hours]

[Maximum Marks: 60

Note :- (1) Question No. 1 is compulsory and attempt it once only.
(2) Solve one question from each unit.

1. Choose the correct alternative :
(1) A simple pendulum with a variable length has \qquad .
(a) One degree of freedom
(b) Two degrees of freedom
(c) Three degrees of freedom
(d) Four degrees of freedom
(2) The shortest distance between two points in space is \qquad .
(a) A circle
(b) An ellipse
(c) A parabola
(d) A straight line
(3) If a bead is sliding along the wire then the constraint is \qquad .
(a) Holonomic
(b) Non-holonomic
(c) Superfluous
(d) None of these
(4) In a central force field, the areal velocity is \qquad .
(a) Not constant
(b) Not conserved
(c) Conserved
(d) Zero
(5) If two curves are closed in the sense of K^{th} order proximity then they are closed in the sense of
\qquad -
(a) Higher order proximity
(b) $(\mathrm{k}+1)^{\mathrm{th}}$ order proximity
(c) Smaller order proximity
(d) Any order proximity
(6) For an inverse square law the Virial theorem reduces to \qquad .
(a) $2 \overline{\mathrm{~T}}=-\mathrm{n} \overline{\mathrm{V}}$
(b) $2 \overline{\mathrm{~T}}=\mathrm{n} \overline{\mathrm{V}}$
(c) $2 \overline{\mathrm{~T}}=\overline{\mathrm{V}}$
(d) $2 \overline{\mathrm{~T}}=-\overline{\mathrm{V}}$
(7) A coordinate q_{i} is said to be cyclic if and only if \qquad .
(a) $\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}=0$
(b) $\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}<0$
(c) $\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}>0$
(d) None of these
(8) The general displacement of a rigid body with \qquad point fixed is a rotation about some axis.
(a) One
(b) Two
(c) Three
(d) Four

1
(9) A square matrix A is said to be orthogonal if \qquad .
(a) $A=A^{T}$
(b) $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$
(c) $\mathrm{A}=\mathrm{A}^{-1}$
(d) None of these
(10) Consider the statements :

A: Finite rotations do not commute
B : Infinitesimal rotations commute
(Select the correct answer from the following) :
(a) A is true and B is false
(b) A is false and B is true
(c) Both A and B are false
(d) Both A and B are true

UNIT-I

2. (a) Prove that the Lagrange's equations of motion can be written in the form $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial d_{i}}=Q_{i}{ }^{\prime}$ for a system which is partly conservative. The quantity L refers to the conservative part and Q^{\prime} to the forces which are not conservative.
(b) Two particles of masses m_{1} and m_{2} are connected by a light inextensible string which passes over a small smooth fixed pulley. If $m_{1}>m_{2}$ then show that the common acceleration of the particle is $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$.
3. (p) If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, show by direct substitution that $L^{\prime}=L+\frac{d F}{d t}, F=F\left(q_{1}, \ldots \ldots, q_{n} t\right)$ also satisfies Lagrange's equations, where F is any arbitrary but differentiable function of its argument.
(q) Find the Lagrangian for the system consisting of a simple pendulum of mass m_{2} with mass m_{1} at the point of support which can move on a horizontal line lying in the plane in which m_{2} moves.

UNIT-II

4. (a) Prove that the problem of motion of two masses interacting only with one another always be reduced to problem of the motion of a single mass.
(b) A particle moves on a curve $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \cos \mathrm{n} \theta$ under the influence of a central force field. Find the law of force.
5. (p) State and prove 'Virial Theorem'.
(q) In a central force field, for a particle moving in a plane, prove that
$\mathrm{t}=\int_{\mathrm{r}_{0}}^{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{f}}$ and $\theta=\theta_{0}+\frac{\mathrm{h}}{\mathrm{m}} \int_{\mathrm{r}_{0}}^{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{fr}^{2}}$ where $\mathrm{f}=\sqrt{\frac{2}{\mathrm{~m}}\left(\mathrm{E}-\mathrm{V}-\frac{\mathrm{h}^{2}}{2 \mathrm{mr}^{2}}\right)}$.

UNIT-III

6. (a) Solye the variational problem
$\delta \int_{1}^{2}\left[x^{2} y^{\prime 2}+2 y^{2}+2 x y\right] d x$

$$
\begin{equation*}
\text { given } \mathrm{y}(1)=\mathrm{y}(2)=0 . \tag{5}
\end{equation*}
$$

(b) If x does not occur explicitly in F, then prove that $F_{y^{\prime}} y^{\prime}-F=$ constant.
7. (p) Show that the geodesics on a right circular cylinder is a circular helix.
(q) Show that the functional $I[Y(x)]=\int_{1}^{2}\left[2 y(x)+y^{\prime}(x)\right] d x$ defined in the space $C_{1}[0,1]$ is continuous on the function $Y_{0}(x)=x$ in the sense of first order proximity.
8. (a) Derive Hamilton's equations from variational principle.
(b) Discuss the Routh's procedure.
9. (p) Prove that:
(i) $\frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\partial \mathrm{H}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{L}}{\partial \mathrm{t}}$
(ii) If a generalized coordinate do not appear in H then prove that the corresponding conjugate momentum is conserved.
(q) Show that Hamilton's principle can be derived from D' Alembert's principle.

UNIT-V

10. (a) Define Infinitesimal rotation. Prove that if $\mathrm{A}=\mathrm{I}+\boldsymbol{\varepsilon}$ then the inverse rotation matrix $\mathrm{A}^{-1}=\mathrm{I}-\boldsymbol{\varepsilon}$.
(b) Describe the frame rotation and obtain the rotation matrix. 5
11. (p) Prove that the change in the components of a vector $\overline{\mathrm{r}}$ under the infinitesimal transformation of the coordinate system can be expressed as $d \bar{r}=\bar{r} \times d \bar{u}$ where $d \bar{u}=\left(d u_{1}, d u_{2}, d u_{3}\right)$ is a vector satisfying an infinitesimal rotation.
(q) Prove that the rotation matrix is orthogonal.
