B.Sc. Part-II (Semester-IV) Examination

MATHEMATICS

(Classical Mechanics)

Paper—VIII

Time	e : T	hree	Hours		[Maximum Marks : 60
Note	e-:4	- (1)	Question No. 1 is compulsory and at	temp	t it once only.
	3	(2)			
1.	Cho	ose 1	the correct alternative :		1
	(1)	The	constraints on a bead on a uniformly	rota	ating wire is a free space is
		(a)	Rheonomous	(b)	Scleronomous
		(c)	Rheonomous and Scleronomous	(d)	None of these
	(2) A particle is constrained to move along the inner surface of a fixed hemispherical The number of degrees of freedom of the particle is				
		(a)	One	(b)	Two
		(c)	Three	(d)	Four
	(3) Each planet describes an ellipse having the sun in one of its				
		(a)	Radius	(b)	Eccentricity
		(c)	Foci	(d)	Centre
	(4) The square of the periodic time of the planet is proportional to the cube of _				s proportional to the cube of
		(a)	Minor axis of its orbit	(b)	Semi major axis of its elliptic orbit
		(c)	Foci of its orbit	(d)	None of these
(5) If the function F does not contain the variable x and y ex all				e x and y explicitly, the extremals are	
		(a)	Straight lines	(b)	Circle
		(c)	Ellipse	(d)	A hyperbola
	(6) The geodesics on a right circular cylinder is a				
		(a)	Circular helix	(b)	Great circles
		(c)	Straight line	(d)	None of these
	(7)	A c	o-ordinate q _i is said to be cyclic if ar	nd or	nly if
	1	(a)	$\frac{\partial L}{\partial q_i} > 0$	(b)	$\frac{\partial L}{rq_i} < 0$
		(c)	$\frac{\partial \mathbf{L}}{\mathbf{r}\mathbf{q}} = 0$	(d)	None of these

1

	(8)	B) In Δ-variation Hamiltonian H is					
		(a) Varies (b) Co	onstant				
		(c) Zero (d) No	one of these				
	(9)	During the motion of rigid body if any straight line inside the body keeps the same					
	direction, then the motion is						
	Α.		eneral motion				
	3	(c) Translation (d) No	one of these				
	(10) The sum of finite rotations depends on the of the rotations.						
		(a) Degree (b) On	rder				
		(a) Degree (b) Or (c) Both degree and order (d) No	one of these $10 \times 1 = 10$				
UNIT—I							
2.	(a)	of motion.	d then obtain the Lagrange's equation 5				
	(b)	Show that the Lagrange's equation $\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} =$	= Q' can also be written in the form				
		$\frac{\partial \dot{\Gamma}}{\partial \dot{q}_{i}} - 2 \frac{\partial \Gamma}{\partial q_{i}} = Q_{i}.$	5				
3.	(p)	Discuss the motion of a particle in a plane by us	sing polar co-ordinates. 5				
	(q)	Two particles of masses m_1 and m_2 , are connected by a light inextensible string whice passes over a small smooth fixed pulley. If $m_1 > m_2$, then show that the common					
		acceleration of the particle is $\left\{\frac{(m_1 - m_2)}{(m_1 + m_2)}\right\} g$.					
UNIT—II							
4.	(a)	a) Prove that for a system moving in a finite region of	of space with finite velocity, the time				
	average of KE is equal to the virial of system i.e. $\overline{T} = -\frac{1}{2} \overline{\sum \overline{F_i} \circ \overline{r_i}}$.						
	(b)	A particle moves on a curve $r^n = a^n \cos n\theta$ under Find the law of force.	the influence of a central force field.				
5.	(n)	p) Prove that in a central force field the angular mom	4				
J.	(P)	Also prove that central force motion is a motion					
	(q)	 For a central force field, show that Kepler's seconservation of angular momentum. 	econd law is a consequence of the 5				

UNIT—III

6. (a) Show that the functional

$$I[y(x)] = \int_{0}^{1} x^{3} \sqrt{1 + y^{2}(x)} dx$$

define on the set of function $y(x) \in C[0, 1]$ is continuous $y_0(x) = x^2$ in the sense of zero-order proximity.

- (b) If x does not occur explicitly in F, then $f_{y'}y' F = constant$.
- 7. (p) Find the extremals of the functional

$$I[y(n)] = \int_{0}^{\pi} (y'^{2} - y^{2} + 4y \cos x) dx, \ y(0) = 0, \ y(\pi) = 0.$$

(q) Show that Euler's - Ostrogradsky equation for a functional

$$I[z(x, y)] = \iint_{D} (1 + p^2 + q^2)^{1/2} dx dy \text{ is } (1 + q^2)r - 2pqs + (1 + p^2)t = 0.$$

5

5

UNIT—IV

- 8. (a) Derive the Hamilton's canonical equations.
 - (b) Construct the Routhian in spherical polar co-ordinates for a particle moving in space under the action of a conservative force field.
- 9. (p) Define Hamiltonian H. Prove that cyclic co-ordinate will be absent in Hamiltonian.
 - (q) For a single particle system, the least action principle yields $\Delta \int \sqrt{2m(H-V)} ds = 0$ where $ds = |d\bar{r}|$.

UNIT-V

- 10. (a) Prove that rotation matrix A is orthogonal.
 - (b) Define infinitesimal rotation. Prove that Infinitesimal rotation matrix \in is antisymmetric.
- 11. (p) Prove that if A is any 3×3 rotation matrix then A is orthogonal and |A| = 1.
 - (q) Prove that in a plane, a rotation of frame through an angle θ , followed by another rotation of the frame through an angle ϕ is equivalent to a single rotation through an angle $\theta + \phi$.