B.Sc. Part-II (Semester-IV) Examination
 MATHEMATICS
 (Modern Algebra : Groups and Rings)
 Paper-VII

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Solve ONE question from each unit.

1. Choose the correct alternatives (1 mark each) :
(1) Group G is abelian group if for all $a, b \in G$:
(a) $\mathrm{a}^{-1} \mathrm{~b}=a \mathrm{~b}^{-1}$
(b) $a b^{-1}=a b$
(c) $\mathrm{ab}=\mathrm{ba}$
(d) $a b=a^{-1} b$
(2) The set N of all natural numbers is a :
(a) Group
(b) Subgroup
(c) Semi-group
(d) Groupoid
(3) If N is a normal subgroup of a finite group G , then $\mathrm{O}(\mathrm{G} / \mathrm{N})$ is equal to :
(a) $\mathrm{O}(\mathrm{N}) \mid \mathrm{O}(\mathrm{G})$
(b) $\mathrm{O}(\mathrm{G}) \cdot \mathrm{O}(\mathrm{N})$
(c) $\mathrm{O}(\mathrm{G}) \mid \mathrm{O}(\mathrm{N})$
(d) None of these
(4) If N is a normal subgroup of G and H is a subgroup of G , then $\mathrm{H} \cap \mathrm{N}$ is :
(a) Subgroup
(b) Cyclic group
(c) Normal subgroup
(d) Simple group
(5) If $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a homomorphism, then $\operatorname{Ker} \phi$ is a :
(a) Subgroup of G^{\prime}
(b) Subgroup of G
(c) Normal subgroup of G^{\prime}
(d) Quotient group
(6) A homomorphism of a group into itself is :
(a) A homomorphism
(b) An isomorphism
(c) An endomorphism
(d) Monomorphism
(7) Let R be a ring with a unit element 1 and $(\mathrm{ab})^{2}=\mathrm{a}^{2} \mathrm{~b}^{2} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$, then R is :
(a) Non-commutative ring
(b) Division ring
(c) Simple ring
(d) Commutative ring
(8) An integral domain is :
(a) Always a field
(b) Never a field
(c) A field when it is finite
(d) None of these
(9) If U is an ideal of a ring R with unity 1 and $1 \in U$, then :
(a) $\mathrm{U}=\mathrm{M}$
(b) $U \neq M$
(c) $U=R$
(d) $U \neq R$
(10) The intersection of two right ideals of R is :
(a) A right ideal of R
(b) A left ideal of R
(c) Both left and right ideal of R
(d) None of these

UNIT—I

2. (a) Define group and prove that cancellation laws hold in a group. $1+4$
(b) Prove that the non-empty subset H of a group G, is a subgroup of G if and only if $a, b \in H \Rightarrow a b^{-1} \in H$.
3. (p) Show the intersection of two subgroups of a group is subgroup. Give an example to show the union of two subgroups of a group is not subgroup.
(q) Define permutation of a group. If $S=\{1,2,3,4,5\}$ and f, g are permutations on S given by :

$$
\mathrm{f}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 4 & 5 & 2
\end{array}\right), \mathrm{g}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)
$$

then prove that the product of f and g is not commutative.
$1+4$

UNIT-II

4. (a) If G is a group and N is a subgroup of index 2 in G , then prove that N is a normal group of G.
(b) If $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ and $\mathrm{N}=\{1,-1\}$, then show that N is a normal subgroup of multiplicative group G. Find quotient group G / N and also order of G / N.
5. (p) If N and M are normal subgroups of G , then prove that NM is also a normal subgroup of G.
(q) If G is a finite group and H is a subgroup of G, then prove that $O(G) / O(N)$.

UNIT-III

6. (a) Define homomorphism. If $\phi: G \rightarrow G^{\prime}$ is a homomorphism, then show that :
(i) $\phi(e)=e^{\prime}$
(ii) $\phi\left(\mathrm{x}^{-1}\right)=[\phi(\mathrm{x})]^{-1} \forall \mathrm{x} \in \mathrm{G}$. $1+4$
(b) If $\phi: G \rightarrow G^{\prime}$ is a homomorphism with kernel K, then prove that $G / K \cong G^{\prime}$. 5
7. (p) Show that if $\phi: G \rightarrow G^{\prime}$ is a homomorphism with kernel K, then K is normal subgroup of G.
(q) If $\phi: G \rightarrow \mathrm{G}^{\prime}$ is a homomorphism with ker ϕ, then prove that ϕ is an isomorphism if and only if $\operatorname{ker} \phi=\{e\}$; where ' e ' is identity element of G.
8. (a) Prove that a non-empty subset K of a field F , is a subfield of F if and only if :

$$
x-y, x y^{-1} \in K \quad \forall x, y \in K, y \neq 0
$$

(b) Prove that an arbitrary intersection of subrings is a subring.
(c) Define :
(i) Ring with unity
(ii) Without zero divisor
(iii) Prime field.
9. (p) If R is a ring with unity and (xy) $)^{2}=x^{2} y^{2} \forall x, y \in R$ then show that R is commutative.
(q) Prove that the characteristic of an integral domain is either zero or a prime number.

UNIT-V

10. (a) If U is an ideal of the ring R, then prove that R / U is a ring.
(b) If R is a commutative ring, with unit element whose only ideals are $\{0\}$ and R , then prove that R is a field.
11. (p) Define :
(i) Maximal ideal
(ii) Principal ideal
(iii) Prime ideal.

Prove that intersection of two ideals is an ideal.
(q) If U is an ideal of a ring R, then prove that R / U is an homomorphic image of R.

5

