B.Sc. Part—II (Semester—IV) Examination MATHEMATICS (Modern Algebra : Groups and Rings) Paper-VII

n Marks : 60

Paper—vII				
Time : Three Hours][Maximum Marks				
Note :—(1) Question No. 1 is compulsory and attempt it once only.				
(2) Solve ONE question from each unit.				
1.	1. Choose the correct alternatives (1 mark each) :			
	(1) Group G is abelian group if for all $a, b \in G$:			
		(a) $a^{-1}b = ab^{-1}$	(b)	$ab^{-1} = ab$ $ab = a^{-1}b$
		(c) $ab = ba$	(d)	$ab = a^{1}b$
	(2) The set N of all natural numbers is a :			
		(a) Group	(b)	Subgroup
		(c) Semi-group	(d)	Groupoid
	(3) If N is a normal subgroup of a finite group G, then O(G/N) is equal to :			
		(a) O(N) O(G)	(b)	$O(G) \cdot O(N)$
		(c) $O(G) O(N)$ 3	(d)	$O(G) \cdot O(N)$ None of these
	(4) If N is a normal subgroup of G and H is a subgroup of G, then $H \cap N$ is :			
		(a) Subgroup	(b)	Cyclic group
		(c) Normal subgroup	(d)	Simple group
	(5) If ϕ : G \rightarrow G' is a homomorphism, then Ker ϕ is a :			is a :
		(a) Subgroup of G'	(b)	Subgroup of G
		(c) Normal subgroup of G'	(d)	Quotient group
	(6) A homomorphism of a group into itself is :			
		(a) A homomorphism	(b)	An isomorphism
		(c) An endomorphism	(d)	Monomorphism
	(7) Let R be a ring with a unit element 1 and $(ab)^2 = a^2b^2 \forall a, b \in R$, then R is			
		(a) Non-commutative ring	(b)	Division ring
		(c) Simple ring	(d)	Commutative ring
	(8)	An integral domain is :		5
		(a) Always a field	(b)	Never a field

(c) A field when it is finite (d) None of these

1

(9) If U is an ideal of a ring R with unity 1 and $1 \in U$, then :

- (a) U = M (b) $U \neq M$
- (c) U = R (d) $U \neq R$
- (10) The intersection of two right ideals of R is :
 - (a) A right ideal of R(b) A left ideal of R(c) Both left and right ideal of R(d) None of these10

UNIT—I

- 2. (a) Define group and prove that cancellation laws hold in a group. 1+4
 - (b) Prove that the non-empty subset H of a group G, is a subgroup of G if and only if a, $b \in H \Rightarrow ab^{-1} \in H$. 5
- 3. (p) Show the intersection of two subgroups of a group is subgroup. Give an example to show the union of two subgroups of a group is not subgroup.
 - (q) Define permutation of a group. If $S = \{1, 2, 3, 4, 5\}$ and f, g are permutations on S given by :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

then prove that the product of f and g is not commutative.

UNIT-II

- 4. (a) If G is a group and N is a subgroup of index 2 in G, then prove that N is a normal group of G. 5
 - (b) If $G = \{1, -1, i, -i\}$ and $N = \{1, -1\}$, then show that N is a normal subgroup of multiplicative group G. Find quotient group G/N and also order of G/N. 5
- 5. (p) If N and M are normal subgroups of G, then prove that NM is also a normal subgroup of G.
 - (q) If G is a finite group and H is a subgroup of G, then prove that O(G)/O(N). 5

UNIT-III

- 6. (a) Define homomorphism. If $\phi : G \to G'$ is a homomorphism, then show that :
 - (i) $\phi(e) = e'$
 - (ii) $\phi(x^{-1}) = [\phi(x)]^{-1} \quad \forall x \in G.$ 1+4
 - (b) If ϕ : G \rightarrow G' is a homomorphism with kernel K, then prove that G/K \cong G'. 5
- 7. (p) Show that if $\phi: G \to G'$ is a homomorphism with kernel K, then K is normal subgroup of G. 5
 - (q) If ϕ : G \rightarrow G' is a homomorphism with ker ϕ , then prove that ϕ is an isomorphism if and only if ker $\phi = \{e\}$; where 'e' is identity element of G. 5

1 + 4

UNIT-IV

8. (a) Prove that a non-empty subset K of a field F, is a subfield of F if and only if : x - y, xy⁻¹ ∈ K ∀ x, y ∈ K, y ≠ 0.
5
(b) Prove that an arbitrary intersection of subrings is a subring.
(c) Define : (i) Ring with unity
(ii) Without zero divisor

(iii) Prime field.

9. (p) If R is a ring with unity and $(xy)^2 = x^2y^2 \quad \forall x, y \in R$ then show that R is commutative.

(q) Prove that the characteristic of an integral domain is either zero or a prime number.

UNIT-V

10. (a) If U is an ideal of the ring R, then prove that R/U is a ring.

311

- (b) If R is a commutative ring, with unit element whose only ideals are {0} and R, then prove that R is a field. 5
- 11. (p) Define :
 - (i) Maximal ideal
 - (ii) Principal ideal
 - (iii) Prime ideal.

Prove that intersection of two ideals is an ideal. 3+2

(q) If U is an ideal of a ring R, then prove that R/U is an homomorphic image of R.

5

3

5

5

317

3