B.Sc. Part—III Semester-VI Examination
 MATHEMATICS

(Linear Algebra)
Paper-XI
Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :
(1) The basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ of the vector space $R(R)$ is known as :
(a) Normal basis
(b) Quotient basis
(c) Standard basis
(d) None of these
(2) Any super set of linearly dependent set is :
(a) Linearly dependent
(b) Linearly independent
(c) Linearly dependent or linearly independent
(d) None of these
(3) If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is an on to map, then :
(a) $\operatorname{dim} \mathrm{U}<\operatorname{dim} \mathrm{V}$
(b) $\operatorname{dim} \mathrm{U}>\operatorname{dim} \mathrm{V}$
(c) $\operatorname{dim} \mathrm{U}=\operatorname{dim} \mathrm{V}$
(d) $\operatorname{dim} \mathrm{U} / \mathrm{dim} \mathrm{V}$
(4) $\{\mathrm{T}(\mathrm{u}) \mid \mathrm{u} \in \mathrm{U}\}=$
(a) $\mathrm{R}(\mathrm{T})$
(b) $\mathrm{N}(\mathrm{T})$
(c) $\mathrm{R}(\mathrm{u})$
(d) None of these
(5) An element of dual space of V is called a :
(a) Bilinear element
(b) Linear functional
(c) Linear element
(d) None of these
(6) If U and W are subspaces of V over F , then $\mathrm{U} \subseteq \mathrm{W} \Rightarrow$
(a) $\mathrm{A}(\mathrm{U})=\mathrm{A}(\mathrm{W})$
(b) $\mathrm{A}(\mathrm{W}) \nsubseteq \mathrm{A}(\mathrm{U})$
(c) $\mathrm{A}(\mathrm{U}) \sim \mathrm{A}(\mathrm{W})$
(d) $\mathrm{A}(\mathrm{U}) \supseteq \mathrm{A}(\mathrm{W})$
(7) The normalized vector $(1,-2,5)$ is :
(a) $(1,-2,5)$
(b) $\left(\frac{1}{2},-1, \frac{5}{2}\right)$
(c) $\left(\frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right)$
(d) $\left(\frac{1}{5}, \frac{-2}{5}, 1\right)$
(8) In an inner product space $\mathrm{V}(\mathrm{F})$, following relation

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

is called :
(a) Schwartz's inequality
(b) Triangular law
(c) Parallelogram law
(d) Bessel's inequality
(9) If the ring R has a unit element 1 and $1 \mathrm{a}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{M}$ is called :
(a) Right R-Module
(b) Left R-Module
(c) Unital R-Module
(d) None of these
(10) If $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{H}$ is a homomorphism of a R-module M into R -module H , then :
(a) $R(T)$ is a submodule of M
(b) $\mathrm{R}(\mathrm{T})$ is a submodule of H
(c) $\mathrm{N}(\mathrm{T})$ is a submodule of H
(d) None of these $\quad 1 \times 10=10$

UNIT-I

2. (a) Show that a non-empty subset U of a vector space $V(F)$ is a subspace of V iff :
(i) $u+v \in U \quad \forall u, v \in U$
(ii) $\alpha \mathrm{u} \in \mathrm{U} \quad \forall \mathrm{u} \in \mathrm{U}, \alpha \in \mathrm{F}$
(b) Define basis of a vector space. Prove that the set $\mathrm{B}=\{(1,1,1),(1,-1,1),(0,1,1)\}$ is a basis of V_{3}.
3. (p) Prove that the intersection of two subspaces of a vector space is again a subspace. Is this statement true for union ?
(q) If U and W are two subspaces of a vector space V and $Z=U+W$, then show that $Z=U \oplus W \Leftrightarrow z=u+W$ uniquely for any $z \in Z$ and for some $u \in U$ and $\mathrm{w} \in \mathrm{W}$.

UNIT-II

4. (a) If $T: R^{2} \rightarrow R^{2}$ is a linear map defined by $T(3,1)=(2,-4)$ and $T(1,1)=(0,2)$, then express $(7,5)$ as a L.C. of $(3,1)$ and $(1,1)$. Hence find image of $(7,5)$ under T .
(b) State and prove Rank-Nullity theorem.
5. (p) Define linear transformation. If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is a linear map, then prove that :
(i) $\mathrm{T}(0)=0$
(ii) $\mathrm{T}(-\mathrm{u})=-\mathrm{Tu} \quad \forall \mathrm{u} \in \mathrm{U}$
(iii) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots \ldots+\alpha_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}\right)=\alpha_{1} \mathrm{Tu}_{1}+\alpha_{2} \mathrm{Tu}_{2}+\ldots .+\alpha_{\mathrm{n}} \mathrm{Tu}_{\mathrm{n}}$ $\forall \alpha_{\mathrm{i}} \in \mathrm{F}, \mathrm{u}_{\mathrm{i}} \in \mathrm{U}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{n} \in \mathrm{N}$.

$$
1+4
$$

(q) Determine range, rank, kernel and nullity of linear map $T: V_{3} \rightarrow V_{3}$ defined by $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{3}-2 \mathrm{x}_{1}\right)$.

UNIT-III
6. (a) If V is finite dimensional vector space over F , then prove that $\mathrm{V} \approx \hat{\mathrm{V}}$.
(b) If W_{1} and W_{2} are subspaces of a finite dimensional vector space V, describe $A\left(W_{1}+W_{2}\right)$ in terms of $A\left(W_{1}\right)$ and $A\left(W_{2}\right)$.
7. (p) If W is a subspace of finite dimensional vector space V , then prove that :

$$
\mathrm{A}(\mathrm{~A}(\mathrm{~W}))=\mathrm{W}
$$

(q) Prove that Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly independent.

UNIT-IV

8. (a) Define inner product space and if V is an inner product space, then prove that for arbitrary vectors $u, v \in V$,
(i) $\|u+v\|^{2}+\|u-v\|^{2}=2\left\{\|u\|^{2}+\|v\|^{2}\right\}$
(ii) $\|\mathrm{u}+\mathrm{v}\|^{2}-\|\mathrm{u}-\mathrm{v}\|^{2}=4 \operatorname{Re}(\mathrm{u} \cdot \mathrm{v}) . \quad 1+2+2$
(b) State and prove Cauchy-Schwartz inequality. 5
9. (p) Prove that W^{\perp} is a subspace of V . 5
(q) Using Gram-Schmidt process orthonormalise the set of vectors

$$
\left\{(1,1,1),(0,1,1),(0,0,1) \text { in } V_{3} .\right.
$$

UNIT-V
10. (a) Define R-module homomorphism and if $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{H}$ is an R-module homomorphism, then prove that T is one-one $\Leftrightarrow \mathrm{K}(\mathrm{T})=\{0\}$.
(b) Prove that every Abelian group G is a module over the ring of integer Z .
11. (p) If R is a ring and $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{H}$ is an R -module homomorphism, then prove that :

$$
\frac{M}{\operatorname{Ker}(T)} \cong R(T)
$$

(q) Let M be an R-module then prove that:
(i) $\mathrm{r} .0=0 \quad \forall \mathrm{r} \in \mathrm{R}$
(ii) $0 . a=0 \quad \forall a \in R$
(iii) $\mathrm{r}(-\mathrm{a})=(-\mathrm{r}) \mathrm{a}=-\mathrm{ra}$
(iv) $(-r)(-a)=r a$
(v) $\mathrm{r}(\mathrm{a}-\mathrm{b})=\mathrm{ra}-\mathrm{rb} \quad \forall \mathrm{r} \in \mathrm{r}, \mathrm{a}, \mathrm{b} \in \mathrm{M}$.

