B.Sc. Part-III Semester-VI Examination MATHEMATICS
 (Graph Theory)
 Paper-XII

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose correct alternatives :-
(1) The vertex with degree one is called as :
(a) Even vertex
(b) Odd vertex
(c) Pendent vertex
(d) Isolated vertex
(2) The maximum number of edges in a simple graph with n vertices is:
(a) $\mathrm{n}(\mathrm{n}+1) / 2$
(b) $\mathrm{n}(\mathrm{n}-1) / 2$
(c) $(\mathrm{n}+1) / 2$
(d) $(\mathrm{n}-1) / 2$
(3) A tree with n vertices has \qquad edges.
(a) $\mathrm{n}-1$
(b) $\mathrm{n}+1$
(c) 1
(d) 0
(4) An edge in a spanning tree T is called as :
(a) Branch
(b) Chord
(c) Outset
(d) Circuit
(5) The formula $\mathrm{n}-\mathrm{e}+\mathrm{f}=2$ for planar graph is given by :
(a) Euler
(b) Cayley
(c) Kuratowski
(d) Hamiltonian
(6) The complete graph of five vertices is called as :
(a) Planar graph
(b) Non-planar graph
(c) Vertex graph
(d) Bipartite graph
(7) The dimension of the cutset subspace W_{s} is equal to the

(a) Degree of vertex
(b) No. of edges
(c) Rank of the graph
(d) Nullity of the graph
(8) Two subspaces W_{1} and W_{2} are said to be orthogonal to each other iff X.Y = \qquad . (for all $X \in W_{1}, Y \in W_{2}$)
(a) 0
(b) 1
(c) $\mathrm{X}-\mathrm{Y}$
(d) $\mathrm{X}+\mathrm{Y}$
(9) In an incidence matrix, a row with all zeros, represent :
(a) Pendent vertex
(b) Isolated vertex
(c) Odd vertex
(d) Even vertex
(10) In path matrix, each row must contain at least one \qquad .
(a) Unit entry
(b) Zero entry
(c) $0(\bmod 2)$ entry
(d) None of these
$10 \times 1=10$

UNIT-I

2. (a) Define (i) Simple graph (ii) Degree of a vertexs. Show that in any graph there are an even number of vertices of odd degree.
(b) When two graphs are said to be isomorphic ? Whether the following graphs are isomorphic or not ? Explain.

3. (p) Prove that a simple graph with n vertices and k components can have at most $\frac{(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)}{2}$ edges.
(q) Define union and intersection of two graphs G_{1} and G_{2}.

From the following figures find (i) $G_{1} \cup G_{2}$ (ii) $G_{1} \cap G_{2}$ (iii) $G_{1} \oplus G_{2}$.

Graph $\boldsymbol{G}_{\boldsymbol{I}}$

Graph $\boldsymbol{G}_{\mathbf{2}}$

UNIT-II

4. (a) Define (i) Binary tree (ii) Rooted tree. Show that there are $\frac{n+1}{2}$ pendent vertices in any binary tree with n vertices.
(b) If G is circuit less graph with n vertices and $\mathrm{n}-1$ edges then prove that there is exactly one path between every pair of vertices in G.
5. (p) Sketch all spanning trees of the following graphs :

Graph $\boldsymbol{G}_{\boldsymbol{I}}$

Graph $\boldsymbol{G}_{\mathbf{2}}$
(q) Define centre of a tree and show that every tree has either one or two centres.

UNIT-III

6. (a) Define planar graph. Prove that complete graph of five vertices is non-planar. $1+4$
(b) If G is a planar connected graph with n vertices, e edges and f faces then prove that $\mathrm{n}-\mathrm{e}+\mathrm{f}=2$.
7. (p) Let T_{1} and T_{2} be two spanning trees of a connected graph G. If edge e is in T_{1} but not in T_{2} prove that these exists another edge f in T_{2} but not in T_{1} such that subgraph $\left(T_{1}-e\right) \cup f$ and $\left(T_{2}-f\right) \cup e$ are also spanning trees of G. 5
(q) Define (i) Branch (ii) Chord. Show that every connected graph has at least one spanning tree.

UNIT-IV

8. (a) Prove that the circuit subspace W_{r} and the cutset subspace W_{s} are orthogonal to each other in the vector space of a graph.
(b) For the given graph G, find $W_{G}, W_{s}, W_{r}, W_{s} \cap W_{r}$ and $W_{s} \cup W_{r}$ with spanning tree $\mathrm{T}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$.

9. (p) Show that the set W_{r} of all circuit vectors including zero vector in W_{G} forms a subspace of W_{G}.
(q) Show that subspaces W_{r} and W_{s} are orthogonal complements iff $W_{r} \cap W_{s}=0$ i.e. $\mathrm{W}_{\mathrm{r}} \cap \mathrm{W}_{\mathrm{s}}=\{\phi\}$.

UNIT-V

10. (a) Find Adjacency matrix of the following graph :

(b) If $A(G)$ is an incidence matrix of a connected graph G with n vertices then prove that rank of $\mathrm{A}(\mathrm{G})$ is $\mathrm{n}-1$.
11. (p) Define circuit matrix. Find the circuit matrix of the following graph :

(q) If B is a circuit matrix of a connected graph G with n vertices, e edges then prove that rank of $\mathrm{B}=\mathrm{e}-\mathrm{n}+1$.
