## AE-1814

# B.Sc. Part–III Semester–VI Examination MATHEMATICS (Graph Theory) Paper—XII

| Time                                                                 | e : 7                                                                     | Three | Hours]                            |     | [Maximum Marks : 60  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|-------|-----------------------------------|-----|----------------------|
| Note $:=$ (1) Question No. 1 is compulsory and attempt it once only. |                                                                           |       |                                   |     |                      |
|                                                                      |                                                                           | (2)   | Attempt ONE question from each un | it. | 1                    |
| 1.                                                                   | Cho                                                                       | ose d | correct alternatives :            |     | 3                    |
|                                                                      | (1) The vertex with degree one is called as :                             |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | Even vertex                       | (b) | Odd vertex           |
|                                                                      |                                                                           | (c)   | Pendent vertex                    | (d) | Isolated vertex      |
|                                                                      | (2) The maximum number of edges in a simple graph with n vertices is :    |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | n(n + 1)/2                        | (b) | n(n - 1)/2           |
|                                                                      |                                                                           | (c)   | (n + 1)/2                         | (d) | (n - 1)/2            |
|                                                                      | (3) A tree with n vertices has edges.                                     |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | n - 1                             | (b) | n + 1                |
|                                                                      |                                                                           | (c)   | 1                                 | (d) | 0                    |
|                                                                      | (4) An edge in a spanning tree T is called as :                           |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | Branch                            | (b) | Chord                |
|                                                                      |                                                                           | (c)   | Cutset                            | (d) | Circuit              |
|                                                                      | (5) The formula $n - e + f = 2$ for planar graph is given by :            |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | Euler                             | (b) | Cayley               |
|                                                                      |                                                                           | (c)   | Kuratowski                        | (d) | Hamiltonian          |
|                                                                      | (6) The complete graph of five vertices is called as :                    |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | Planar graph                      | (b) | Non-planar graph     |
|                                                                      |                                                                           | (c)   | Vertex graph                      | (d) | Bipartite graph      |
|                                                                      | (7) The dimension of the cutset subspace $W_s$ is equal to the <u>3</u> . |       |                                   |     |                      |
|                                                                      |                                                                           | (a)   | Degree of vertex                  | (b) | No. of edges         |
|                                                                      |                                                                           | (c)   | Rank of the graph                 | (d) | Nullity of the graph |

1

(8) Two subspaces  $W_1$  and  $W_2$  are said to be orthogonal to each other iff X.Y = \_\_\_\_. (for all  $X \in W_1, Y \in W_2$ ) (a) 0 (b) 1 (c) X - Y(d) X + Y(9) In an incidence matrix, a row with all zeros, represent : (a) Pendent vertex (b) Isolated vertex (c) Odd vertex (d) Even vertex (10) In path matrix, each row must contain at least one \_\_\_\_\_. (a) Unit entry (b) Zero entry (c)  $0 \pmod{2}$  entry (d) None of these  $10 \times 1 = 10$ UNIT-I

- 2. (a) Define (i) Simple graph (ii) Degree of a vertexs. Show that in any graph there are an even number of vertices of odd degree. 2+3
  - (b) When two graphs are said to be isomorphic ? Whether the following graphs are isomorphic or not ? Explain. 1+4



- 3. (p) Prove that a simple graph with n vertices and k components can have at most  $\frac{(n-k)(n-k+1)}{2}$  edges. 5
  - (q) Define union and intersection of two graphs  $G_1$  and  $G_2$ . From the following figures find (i)  $G_1 \cup G_2$  (ii)  $G_1 \cap G_2$  (iii)  $G_1 \oplus G_2$ . 5



#### UNIT-II

- (a) Define (i) Binary tree (ii) Rooted tree. Show that there are  $\frac{n+1}{2}$  pendent vertices in 4. any binary tree with n vertices. 2+3
  - (b) If G is circuit less graph with n vertices and n 1 edges then prove that there is exactly one path between every pair of vertices in G. 5
- (p) Sketch all spanning trees of the following graphs : 5.



5

1 + 4

(q) Define centre of a tree and show that every tree has either one or two centres.

UNIT-III

(a) Define planar graph. Prove that complete graph of five vertices is non-planar. 6. 1 + 4

- (b) If G is a planar connected graph with n vertices, e edges and f faces then prove that n - e + f = 2. 5
- (p) Let  $T_1$  and  $T_2$  be two spanning trees of a connected graph G. If edge e is in  $T_1$  but not 7. in  $T_2$  prove that these exists another edge f in  $T_2$  but not in  $T_1$  such that subgraph  $(T_1 - e) \cup f$  and  $(T_2 - f) \cup e$  are also spanning trees of G. 5
  - (q) Define (i) Branch (ii) Chord. Show that every connected graph has at least one spanning 2+3tree.

#### UNIT-IV

- 8. (a) Prove that the circuit subspace  $W_r$  and the cutset subspace  $W_s$  are orthogonal to each other in the vector space of a graph. 5
  - (b) For the given graph G, find  $W_{G}$ ,  $W_{s}$ ,  $W_{r}$ ,  $W_{s} \cap W_{r}$  and  $W_{s} \cup W_{r}$  with spanning tree 5  $T = \{e_1, e_2\}.$ 21



- 9. (p) Show that the set  $W_r$  of all circuit vectors including zero vector in  $W_G$  forms a subspace of  $W_G$ .
  - (q) Show that subspaces  $W_r$  and  $W_s$  are orthogonal complements iff  $W_r \cap W_s = 0$  i.e.  $W_r \cap W_s = \{\phi\}$ .

### UNIT-V

- 10. (a) Find Adjacency matrix of the following graph :  $\begin{array}{c}
  \mathbf{v}_{2} \\ \mathbf{v}_{4} \\ \mathbf{v}_{5} \\ \mathbf{v}_{5} \\ \mathbf{v}_{6} \end{array}$ 
  - (b) If A(G) is an incidence matrix of a connected graph G with n vertices then prove that rank of A(G) is n 1.
- 11. (p) Define circuit matrix. Find the circuit matrix of the following graph : 5



(q) If B is a circuit matrix of a connected graph G with n vertices, e edges then prove that rank of B = e - n + 1. 5

4



5