B.Sc. (Part-II) (Semester–III) (Old) Examination

MATHEMATICS

(Elementary Number Theory)

Paper-VI

Time	: Thr	ee Ho	urs]			[Maximum Marks : 60
Note	37	(1)	Question No.1 is compulsory and	d atter	mpt it once only.	
		(2)	Solve one question from each un	it.	A	
1.	Choo	ose the	e correct alternative (1 mark each):		10
	(i)	If a b	and $1 < a < b$ then a is called		<u> </u>	
		(A)	Proper divisor	(B)	Improper divisor	
		(C)	G.C.D.	(D)	None of these	
	(ii)	The p				
		(A)	(m–1)!	(B)	m !	
		(C)	(m+1) !	(D)	None	
	(iii)	If inte	eger a and b are relatively prime t	hem _	·	
		(A)	(a,b) =0	(B)	(a,b) >1	
		(C)	(a,b) =1	(D)	None	
	(iv) The integers of the form $2^{2^n} + 1$ are called _					
		(A)	Fermat Number	(B)	Perfect Number	
		(C)	Both	(D)	None of these	
	(v)	If a ≡	• b (mod m) then			
		(A)	m a+b	(B)	m a–b	
		(C)	m ab	(D)	None	
	(vi)	The l	inear congruence $ax \equiv b \pmod{m}$	has a	unique solution modulo i	n, if
		(A)	(a, m) =1	(B)	(a,m) > 1	
		(C)	(a, m) < 1	(D)	None of these	1
	(vii)	If ¢ i	s Euler function then for $n = 4$ the	value	of ϕ (n) =	
		(A)	1	(B)	2	
		(C)	3	(D)	4	

	(viii)	For $n = 18$ the value of arithmetic function $T(n) = $							
		(A) 6 (A)	B) 39						
		(C) 36 (A	D) 12						
	(ix)	Let "a" be a primitive root of "m" then							
		(A) $O_{\rm m}(a) = \boldsymbol{f}(m)$ (a)	B) $O_m(a) = \boldsymbol{f}(m+1)$						
		(C) $O_{m}(a) = f(a)$	(D) None of these						
	(x)	If P is an odd prime with Primitive root	a, then primitive root of P^2 is either						
		(A) a or a-P (B) a or a+P						
		(C) a or aP (D) None of these						
		UN	IT-I 3						
2.	(a)	Let a and b be integers that are not both	zero. Then prove that a and b are relatively prime	iff					
		there exist integers x and y such that xa -	+yb =1.	5					
	(b)	Find the gcd of 275 and –200 and expres	ess it in the form $275x + (-200)y$.	5					
3.	(c)	Prove that $a bc$ and $(a,b) =1$ then $a c$.		4					
	(d)	Prove that $(a, b+ka) = (a,b)$ where a,b ,	k∈Z.	3					
	(e)	Prove that a necessary and sufficient co	ndition for $[a,b]=ab$ is $(a,b)=1$ where $a,b \in \mathbb{N}$.	3					
		UN	ІТ-П						
4.	(a)	Prove that every positive integer greater	than one has at least one prime divisor.	6					
	(b)	Prove that $(a^2,b^2) = c^2$ if $(a,b) = c$.		4					
5.	(c)	Prove that every positive integer $a > 1$ c	an be written uniquely as a product of primes apar	rt					
		from the order in which the factors occu	Ir i.e. $a = p_1 p_2 \dots p_r$ all p_i being prime.	6					
	(d)	Prove that if 2^m-1 is prime then m is also	o a prime.	4					
		UNI	T-III						
6.	(a)	Prove that congruence is an equivalence	relation.	5					
	(b)	Prove that if $a \equiv b \pmod{m_1}$ and $a \equiv b$	$(\text{mod } \mathbf{m}_2) \text{ then } \mathbf{a} \equiv \mathbf{b} \ (\text{mod } [\mathbf{m}_1, \mathbf{m}_2]).$	5					
7.	(c)	Show that the system of congruence $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ has a solution $(m,n) \mid (a-b)$.							
	(d)	Find the remainder obtained upon dividi	ng the sum						
		1!+2!+3! ++ 1000!+1001	! by 12.	5					

UNIT-IV

8.	(a)	Solve the linear congruence $5x \equiv 3 \pmod{14}$ using Euler's theorem.	5
	(b)	Prove that Möbius µ-function is multiplicative.	5
9.	(c)	Prove that m be a positive integer and a be an integer with $(a,m) = 1$ then $a^{\phi(m)} \equiv 1 \pmod{m}$.5
	(d)	Prove that if f is a multiplicative function then the arithmetic function $F(n) = \sum_{d n} f(d)$ is a	lso
	multiplicative.	5	
1	31	UNIT-V	
10.	(a)	Prove that if the +ve integer m has a primitive root, then it has total of ϕ (ϕ (m)) in congrue	ent
		roots.	5
	(b)	Prove that the congruence $x^2 \equiv a \pmod{p}$ has either no solution or exactly two in congruence	ent
		solution modulo p.	5

- 11. (c) Solve the quadratic congruence $x^2+7x+10 \equiv 0 \pmod{11}$. 6
 - (d) Find the primitive root of p = 41.

3

317

317

4