B.Sc. (Part-II) (Semester-III) (Old) Examination
 MATHEMATICS

(Elementary Number Theory)

Paper-VI

Time : Three Hours]
[Maximum Marks : 60
Note :- (1) Question No. 1 is compulsory and attempt it once only.
(2) Solve one question from each unit.

1. Choose the correct alternative (1 mark each) :
(i) If $\mathrm{a} \mid \mathrm{b}$ and $1<|\mathrm{a}|<\mathrm{b}$ then a is called \qquad .
(A) Proper divisor
(B) Improper divisor
(C) G.C.D.
(D) None of these
(ii) The product of any m consecutive integers is divisible by \qquad .
(A) $(\mathrm{m}-1)$!
(B) m !
(C) $(m+1)$!
(D) None
(iii) If integer a and b are relatively prime them \qquad .
(A) $(a, b)=0$
(B) $(\mathrm{a}, \mathrm{b})>1$
(C) $(a, b)=1$
(D) None
(iv) The integers of the form $2^{2^{n}}+1$ are called \qquad .
(A) Fermat Number
(B) Perfect Number
(C) Both
(D) None of these
(v) If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ then \qquad .
(A) $\mathrm{m} \mid \mathrm{a}+\mathrm{b}$
(B) $\mathrm{m} \mid \mathrm{a}-\mathrm{b}$
(C) mab
(D) None
(vi) The linear congruence $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{m})$ has a unique solution modulo m , if \qquad .
(A) $(a, m)=1$
(B) $(\mathrm{a}, \mathrm{m})>1$
(C) $(\mathrm{a}, \mathrm{m})<1$
(D) None of these
(vii) If ϕ is Euler function then for $n=4$ the value of $\phi(n)=$ \qquad
(A) 1
(B) 2
(C) 3
(D) 4
(viii) For $\mathrm{n}=18$ the value of arithmetic function $\mathrm{T}(\mathrm{n})=$ \qquad .
(A) 6
(B) 39
(C) 36
(D) 12
(ix) Let "a" be a primitive root of " m " then \qquad .
(A) $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\phi(\mathrm{m})$
(B) $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\phi(\mathrm{m}+1)$
(C) $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\phi(\mathrm{a})$
(D) None of these
(x) If P is an odd prime with Primitive root a, then primitive root of P^{2} is either \qquad .
(A) a or $\mathrm{a}-\mathrm{P}$
(B) a or $\mathrm{a}+\mathrm{P}$
(C) a or aP
(D) None of these

UNIT-I

2. (a) Let a and b be integers that are not both zero. Then prove that a and b are relatively prime iff there exist integers x and y such that $x a+y b=1$.
(b) Find the gcd of 275 and -200 and express it in the form $275 x+(-200) y$.
3. (c) Prove that $\mathrm{a} \mid \mathrm{bc}$ and $(\mathrm{a}, \mathrm{b})=1$ then $\mathrm{a} \mid \mathrm{c}$. 4
(d) Prove that $(a, b+k a)=(a, b)$ where $a, b, k \in Z$.
(e) Prove that a necessary and sufficient condition for $[a, b]=a b$ is $(a, b)=1$ where $a, b \in N$.

UNIT-II

4. (a) Prove that every positive integer greater than one has at least one prime divisor.
(b) Prove that $\left(a^{2}, b^{2}\right)=c^{2}$ if $(a, b)=c$.
5. (c) Prove that every positive integer a >1 can be written uniquely as a product of primes apart from the order in which the factors occur i.e. $a=p_{1} p_{2} \ldots p_{r}$ all p_{i} being prime.
(d) Prove that if $2^{m}-1$ is prime then m is also a prime.

UNIT-III

6. (a) Prove that congruence is an equivalence relation.
(b) Prove that if $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{m}_{1}\right)$ and $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{m}_{2}\right)$ then $\mathrm{a} \equiv \mathrm{b}\left(\bmod \left[\mathrm{m}_{1}, \mathrm{~m}_{2}\right]\right)$.
7. (c) Show that the system of congruence $x \equiv \mathrm{a}(\bmod m)$ and $x \equiv \mathrm{~b}(\bmod \mathrm{n})$ has a solution iff $(\mathrm{m}, \mathrm{n}) \mid(\mathrm{a}-\mathrm{b})$.
(d) Find the remainder obtained upon dividing the sum $1!+2!+3!+$ \qquad $+1000!+1001$! by 12 .

UNIT-IV

8. (a) Solve the linear congruence $5 x \equiv 3(\bmod 14)$ using Euler's theorem.
(b) Prove that Möbius μ-function is multiplicative.
9. (c) Prove that m be a positive integer and a be an integer with $(a, m)=1$ then $\mathrm{a}^{\phi(m)} \equiv 1(\bmod m) \cdot 5$
(d) Prove that if f is a multiplicative function then the arithmetic function $\mathrm{F}(n)=\sum_{\mathrm{d} \mid \mathrm{n}} f(d)$ is also multiplicative.

UNIT-V

10. (a) Prove that if the + ve integer m has a primitive root, then it has total of $\phi(\phi(m))$ in congruent roots.
(b) Prove that the congruence $x^{2} \equiv \mathrm{a}(\bmod \mathrm{p})$ has either no solution or exactly two in congruent solution modulo p .
11. (c) Solve the quadratic congruence $x^{2}+7 x+10 \equiv 0(\bmod 11)$.
(d) Find the primitive root of $\mathrm{p}=41$.
