B.Sc. Part-II Semester-IV Examination MATHEMATICS

(Classical Mechanics)

Paper-VIII

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Solve ONE question from each Unit.

1. Choose the correct alternative :
(1) A bead sliding along the wire. The constraint is :
(a) Holonomic
(b) Non-holonomic
(c) Both holonomic and non-holonomic
(d) None of these
(2) The system of particles will be in equilibrium if the virtual work done by the applied forces is :
(a) Infinity
(b) Zero
(c) Non-zero
(d) None of these
(3) A point on the orbit of a planet that is nearest to the Sun is called \qquad of planet.
(a) Aphelion
(b) Apse
(c) Perihelion
(d) Focus
(4) Let $\mathrm{f}=\mathrm{f}(\mathrm{q}, \dot{\mathrm{q}}, \mathrm{t})$. Then $\Delta \mathrm{f}=\delta \mathrm{f}$ when :
(a) f does not contain q
(b) f does not contain $\dot{\mathrm{q}}$
(c) f does not contain t explicitly
(d) f is constant in time t
(5) In the frame rotation, the co-ordinate frame :
(a) Held fixed
(b) Rotates
(c) Orthogonal
(d) None of these
(6) The general displacement of a rigid body with one point fixed is :
(a) Rotation about some axis
(b) Rotation about some points
(c) Rotation about focus
(d) None of these
(7) In δ-variation Hamiltonian H :
(a) Constant
(b) Varies
(c) Zero
(d) None of these
(8) The second order partial differential equation $F_{z}-\frac{\partial}{\partial x} F_{p}-\frac{\partial}{\partial y} F_{q}=0$ is known as :
(a) Euler Poisson equation
(b) Euler-Ostrogradsky equation
(c) Geodesics
(d) None of these
(9) Area of triangle with side $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is :
(a) $\overline{\mathrm{a}} \circ \overline{\mathrm{b}}=2$
(b) $\frac{1}{2}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$
(c) $\frac{1}{2} \overline{\mathrm{a}} \circ \overline{\mathrm{b}}$
(d) None of these
(10) The constraints on a bead on uniformly rotating wire is a free space is :
(a) Rheonomous
(c) Rheonomous and Scleronomous
(b) Scleronomous
(d) None of these
$1 \times 10=10$

UNIT-I
2. (a) Obtain the equation of motion of a simple pendulum by using D'Alembert's principle.
(b) Obtain the Lagrange's equation of motion for the double pendulum of length ℓ_{1} and ℓ_{2} with corresponding masses m_{1} and m_{2}.
3. (p) Find the Lagrangian for the system consisting of a simple pendulum of mass m_{2} with mass m^{7} at the point of support which can move on horizontal line lying in the plane in which m_{2} moves.
(q) For one-dimensional system consisting of a particle the generalized force Q can be obtained from the potential V in the usual way i.e. $\mathrm{Q}=\frac{-\partial \mathrm{V}}{\partial \mathrm{q}}$. Show that for a velocity independent potential Lagrange's equation can be written in the form $\frac{d}{d t} \frac{\partial T}{\partial \dot{q}}-\frac{\partial T}{\partial q}=Q$.

UNIT-II

4. (a) Prove that for a central force field F , the path of a particle of mass m is given by

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dQ}^{2}}+\mathrm{u}=-\frac{\mathrm{m}}{\mathrm{~h}^{2} \mathrm{u}^{2}} \mathrm{~F}\left(\frac{1}{\mathrm{u}}\right), \mathrm{u}=\frac{1}{\mathrm{r}} \tag{5}
\end{equation*}
$$

(b) Show that for a particle moving under a central force such that $\mathrm{V}=\mathrm{kr}^{\mathrm{n}+1}$, the virial theorem reduces to $\overline{2 T}=(n+1) \overline{\mathrm{V}}$. Also prove that for an inverse square law, $3 \overline{2 T}=-\overline{\mathrm{V}}$.
5. (p) Show that the equation of the orbit can be put in the form $r=\frac{a\left(1-\epsilon^{2}\right)}{1+\epsilon \cos \alpha \theta}$ of a particle moving in a central force field $\mathrm{F}=-\frac{\mathrm{k}}{\mathrm{r}^{2}}+\frac{\mathrm{c}}{\mathrm{r}^{3}}$. Furthermore show that it is an ellipse for $\alpha=1$.
(q) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards point on a circle, then the force varies as the inverse fifth power of the distance.

UNIT-III

6. (a) Define distance between curves. Find the distance between curves $y(x)=x \cdot e^{x}$, $y_{1}(x)=0$ on $[0,2]$.
(b) Show that the functional $\mathrm{I}[\mathrm{y}(\mathrm{x})]=\int_{0}^{1} \mathrm{x}^{3} \sqrt{1+\mathrm{y}^{2}(\mathrm{x})}$ dx define on the set of function $y(x) \in C[0,1]$ is continuous on the function $y_{0}(x)=x^{2}$ in the sense of Zeroth-order proximity.
7. (p) If x does not occur explicitly in f, then prove that $f_{y^{\prime}} y^{\prime}-f=$ constant .
(q) Find the extremals of:

$$
\begin{equation*}
I[y(x)]=\int_{a}^{b}\left[y^{2}+y^{\prime 2}+2 y^{x}\right] d x \tag{5}
\end{equation*}
$$

UNIT—IV

8. (a) Define Hamiltonian H. Prove that cyclic co-ordinate will be absent in Hamiltonian.
(b) Deduce the Hamiltonian's equation of motion of a particle of mass m in spherical polar co-ordinates (r, θ, ϕ).
9. (p) Obtain the Hamiltonian and then deduce the equations of motion for a simple pendulum. Show that the Hamiltonian of the system is the total energy and also the constant of motion.
(q) Define Routhian. Prove that a cyclic co-ordinate will not occur in the Routhian R.

UNIT-V

10. (a) Define infinitesimal rotation. Prove that infinitesimal rotation matrix \in is antisymmetric.
(b) Prove that 3×3 matrix A is a rotation matrix, then A is orthogonal and $|\mathrm{A}|=1$.
11. (p) Prove that the change in the components of a vector $\overline{\mathrm{r}}$ under the infinitesimal transformation of the co-ordinate system can be expressed as $\mathrm{d} \overline{\mathrm{r}}=\overline{\mathrm{r}} \times \mathrm{d} \overline{\mathrm{u}}$, where $\mathrm{d} \overline{\mathrm{u}}=\left(\mathrm{du}, \mathrm{du}_{2}, d \mathrm{du}_{3}\right)$ is vector specifying an infinitesimal rotation.
(q) If A is any 2×2 orthogonal matrix with determinant $|A|=1$ then prove that A is a rotation matrix.
