AE-1764

B.Sc. Part—II Semester—IV Examination MATHEMATICS (Classical Mechanics)

Paper-VIII

Time : Three Hours]

[Maximum Marks : 60

- Note : (1) Question No. 1 is compulsory and attempt it once only.
 - (2) Solve ONE question from each Unit.
- 1. Choose the correct alternative :
 - (1) A bead sliding along the wire. The constraint is :
 - (a) Holonomic (b) Non-holonomic
 - (c) Both holonomic and non-holonomic (d) None of these
 - (2) The system of particles will be in equilibrium if the virtual work done by the applied forces is :
 - (a) Infinity (b) Zero
 - (c) Non-zero (d) None of these

(3) A point on the orbit of a planet that is nearest to the Sun is called _____ of planet.

- (a) Aphelion (b) Apse
- (c) Perihelion (d) Focus
- (4) Let $f = f(q, \dot{q}, t)$. Then $\Delta f = \delta f$ when :
 - (a) f does not contain q (b) f does not contain \dot{q}
 - (c) f does not contain t explicitly (d) f is constant in time t

(5) In the frame rotation, the co-ordinate frame :

- (a) Held fixed (b) Rotates
- (c) Orthogonal (d) None of these
- (6) The general displacement of a rigid body with one point fixed is :
 - (a) Rotation about some axis (b) Rotation about some points
 - (c) Rotation about focus (d) None of these

(7) In δ -variation Hamiltonian H :

- (a) Constant (b) Varies
- (c) Zero (d) None of these

(8) The second order partial differential equation $F_z - \frac{\partial}{\partial x} F_p - \frac{\partial}{\partial y} F_q = 0$ is known as :

(a) Euler Poisson equation(b) Euler-Ostrogradsky equation(c) Geodesics(d) None of these

(9) Area of triangle with side \overline{a} and \overline{b} is :

(a)
$$\overline{a} \circ \overline{b} = 2$$
 (b) $\frac{1}{2} |\overline{a} \times \overline{b}|$

(c)
$$\frac{1}{2} \overline{a} \circ \overline{b}$$
 (d) None of these

(10) The constraints on a bead on uniformly rotating wire is a free space is :

- (a) Rheonomous(b) Scleronomous(c) Rheonomous and Scleronomous(d) None of these
- (c) Rheonomous and Scleronomous (d) None of these $1 \times 10 = 10$

UNIT—I

- 2. (a) Obtain the equation of motion of a simple pendulum by using D'Alembert's principle. 5
 - (b) Obtain the Lagrange's equation of motion for the double pendulum of length ℓ_1 and ℓ_2 with corresponding masses m_1 and m_2 .
- 3. (p) Find the Lagrangian for the system consisting of a simple pendulum of mass m₂ with mass m₁ at the point of support which can move on horizontal line lying in the plane in which m₂ moves.
 - (q) For one-dimensional system consisting of a particle the generalized force Q can be obtained from the potential V in the usual way i.e. $Q = \frac{-\partial V}{\partial q}$. Show that for a velocity

independent potential Lagrange's equation can be written in the form $\frac{d}{dt} \frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = Q$.

UNIT-II

4. (a) Prove that for a central force field F, the path of a particle of mass m is given by

$$\frac{d^{2}u}{dQ^{2}} + u = -\frac{m}{h^{2}u^{2}} F\left(\frac{1}{u}\right), u = \frac{1}{r} .$$
 5

(b) Show that for a particle moving under a central force such that $V = kr^{n+1}$, the virial theorem reduces to $\overline{2T} = (n+1)\overline{V}$. Also prove that for an inverse square law, $\overline{2T} = -\overline{V}$.

5. (p) Show that the equation of the orbit can be put in the form $r = \frac{a(1 - \epsilon^2)}{1 + \epsilon \cos \alpha \theta}$ of a particle

moving in a central force field $F = -\frac{k}{r^2} + \frac{c}{r^3}$. Furthermore show that it is an ellipse for $\alpha = 1$.

(q) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards point on a circle, then the force varies as the inverse fifth power of the distance.

UNIT—III

- 6. (a) Define distance between curves. Find the distance between curves $y(x) = x \cdot e^x$, $y_1(x) = 0$ on [0, 2]. 1+4
 - (b) Show that the functional $I[y(x)] = \int_{0}^{1} x^{3} \sqrt{1 + y^{2}(x)} dx$ define on the set of function $y(x) \in C[0, 1]$ is continuous on the function $y_{0}(x) = x^{2}$ in the sense of Zeroth-order proximity.

7. (p) If x does not occur explicitly in f, then prove that $f_{y'}y' - f = \text{constant}$. 5

(q) Find the extremals of :

$$I[y(x)] = \int_{a}^{b} [y^{2} + y'^{2} + 2ye^{x}] dx.$$
 5

UNIT-IV

- 8. (a) Define Hamiltonian H. Prove that cyclic co-ordinate will be absent in Hamiltonian. 1+4
 - (b) Deduce the Hamiltonian's equation of motion of a particle of mass m in spherical polar co-ordinates (r, θ , ϕ). 5

- (p) Obtain the Hamiltonian and then deduce the equations of motion for a simple pendulum.
 Show that the Hamiltonian of the system is the total energy and also the constant of motion.
 - (q) Define Routhian. Prove that a cyclic co-ordinate will not occur in the Routhian R.

5

5

UNIT-V

- 10. (a) Define infinitesimal rotation. Prove that infinitesimal rotation matrix \in is antisymmetric. 1+4
 - (b) Prove that 3×3 matrix A is a rotation matrix, then A is orthogonal and |A| = 1.
- 11. (p) Prove that the change in the components of a vector \overline{r} under the infinitesimal transformation of the co-ordinate system can be expressed as $d\overline{r} = \overline{r} \times d\overline{u}$, where $d\overline{u} = (du_1, du_2, du_3)$ is vector specifying an infinitesimal rotation. 5
 - (q) If A is any 2×2 orthogonal matrix with determinant |A| = 1 then prove that A is a rotation matrix. 5

317

317

317