B.Sc. Part—II Semester—III (Old) Examination **MATHEMATICS**

(Advanced Calculus)

Paper—V

Time : Three Hours]

Note := (1) Question No. 1 is compulsory.

(2) Attempt **ONE** question from each Unit.

- 1. Choose the correct alternatives :
 - (1) The value of $\lim_{n \to \infty} \frac{4 + 3.10^n}{5 + 3.10^n}$ is :
 - (a) 4/5 (b) 0
 - (d) 4 (c) 1
 - (2) The sequence $\langle s_n \rangle$, where $s_n = \frac{\sqrt{n}}{n+1}$ is : 317
 - (b) Monotonic decreasing (a) Monotonic increasing (d) Oscillatory sequence (c) Constant sequence
 - (3) The Geometric Series $\sum_{n=1}^{\infty} r^{n-1}$ is convergent if :
 - (a) r = 0(b) r = 1(d) r > 1(c) r < 1
 - (4) The p-series $\sum \frac{1}{p^p}$ in which p = 1 then is called as :
 - (a) Geometric series (b) Exponential series (c) Logarithmic series (d) Harmonic series
 - (5) If iterated limit of a function are not equal at point then :
 - (a) Limit exist at point (b) Limit does not exist (c) Limit is zero (d) None of these
 - (6) If $\lim_{(x, y) \to (x_0, y_0)} f(x, y) \neq f(x_0, y_0)$, then :

(a) f is continuous

(c) f is discontinuous

- (b) f is continuous at (x_0, y_0)
- (d) None of these

[Maximum Marks : 60

(7) If u = 2x - y, v = x + 4y, then $J = \frac{\partial(u, v)}{\partial(x, y)} =$ _____. (a) $\frac{1}{9}$ (b) 9 (c) 1 (d) 10 (8) If J is the Jacobian of x and y w.r.t. u and v and J' Jacobian of u, v w.r.t. x and y. Then J' is : (a) $\frac{1}{1}$ (b) J (d) J^2 (c) -J(9) $\int \int \int xy^2 dy dx =$ (a) $\frac{12}{3}$ (b) $\frac{13}{3}$ 317 (d) $\frac{15}{3}$ (c) $\frac{14}{3}$ (10) The value $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} dx dy dz$ is : (a) 6 (b) 8 1×10=10 (c) 4 (d) 2 UNIT-I

2. (a) Prove that every Cauchy sequence is bounded. 4

(b) Show that the sequence $\langle s_n \rangle = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ is convergent. 3

(c) Evaluate
$$\lim_{n \to \infty} \frac{1+2+3+4+.....+n}{n^2}$$
. 3

OR

3. (p) A real sequence <s_n> converges iff for each ∈ > 0, ∃ M ∈ N such that |s_m - s_n| < ∈ ∀m, n ≥ M. Prove this.
(q) Prove that every convergent sequence of real numbers is a Cauchy sequence.
(r) Prove that limit of sequence if it exists is unique.

LU-12259

UNIT—II

4. (a) Test the convergence of series
$$\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)}$$
 by using integral test. 4

- (b) If the series $\sum x_n$ is convergent then prove that $\lim_{n \to \infty} x_n = 0$. 3
- (c) Define :
 - (i) Harmonic series
 - (ii) Absolutely convergent
 - (iii) Conditionally convergent.

OR

5. (p) Prove that
$$\sum \frac{1}{n^p}$$
 converges when $p > 1$ and diverges when $p \le 1$.

(q) Test the converges of series
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} \dots$$
 3

(r) Test the converges of
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$
. 3

(c) Using
$$\in -\delta$$
 detⁿ of limit of function prove that $\lim_{(x, y) \to (1, 1)} (x^2 + 2y) = 3$. 3

OR

7. (p) Prove that if x, y are differentiable functions of u, v and u, v are differentiable functions of r, s, then prove that :

$$\frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{u}, \mathbf{v})} \times \frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{r}, \mathbf{s})} = \frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{r}, \mathbf{s})}$$

$$4$$

(q) Obtain the expansion of $f(x, y) = x^2 - y^2 + 3xy$ at point (1, 2). 3

(r) Prove that the function f(x, y) = x + y is continuous function $\forall x, y \in \mathbb{R}^2$. 3

8. (a) If $x = r \cos \theta$, $y = r \sin \theta$ find $J = \frac{\partial(x, y)}{\partial(x, \theta)}$ and $J' = \frac{\partial(1, \theta)}{\partial(x, y)}$ and also prove that JJ' = 1.

3

4

- (b) Show that the function $f(x, y) = 2x^4 3x^2y + y^2$ has neither maxima or minima at 3 (0, 0).
- (c) Find the extremum of sin A \cdot Sin B \cdot Sin C subject to condition A + B + C = π .

3

OR

9. (p) Find by using Lagrange's method of multiplier the least distance of the origin from plane (q) If xu = yz, yv = xz, zw = xy, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. 4 3

(r) Find the Maxima and Minima value of function $x^3 + y^3 - 3axy$. UNIT—V 3

10. (a) Evaluate
$$\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} x^2 \, dy dx$$
. 5

(b) Evaluate by Stoke's theorem $\int_{C} (e^{x}dx + 2ydy - dz)$, where 'C' is the curve $x^2 + y^2 = 4$, z = 2. 5

OR

4

11. (p) Evaluate by changing the order of integration :

$$\int_{0}^{2a} \int_{x^2/4a}^{3a-x} f(x, y) dx \cdot dy$$
5

(q) Evaluate :

$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx dy dz$$
 5

.1	
311	
5	

317