B.Sc. Part—II Semester-III (Old) Examination
 MATHEMATICS
 (Advanced Calculus)

Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :
(1) The value of $\lim _{n \rightarrow \infty} \frac{4+3.10^{n}}{5+3.10^{n}}$ is :
(a) $4 / 5$
(b) 0
(c) 1
(d) 4
(2) The sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle$, where $\mathrm{s}_{\mathrm{n}}=\frac{\sqrt{\mathrm{n}}}{\mathrm{n}+1}$ is :
(a) Monotonic increasing
(b) Monotonic decreasing
(c) Constant sequence
(d) Oscillatory sequence
(3) The Geometric Series $\sum_{n=1}^{\infty} r^{n-1}$ is convergent if :
(a) $\mathrm{r}=0$
(b) $\mathrm{r}=1$
(c) $\mathrm{r}<1$
(d) $\mathrm{r}>1$
(4) The p-series $\sum \frac{1}{\mathrm{n}^{\mathrm{p}}}$ in which $\mathrm{p}=1$ then is called as:
(a) Geometric series
(b) Exponential series
(c) Logarithmic series
(d) Harmonic series
(5) If iterated limit of a function are not equal at point then :
(a) Limit exist at point
(b) Limit does not exist
(c) Limit is zero
(d) None of these
(6) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) \neq f\left(x_{0}, y_{0}\right)$, then:
(a) f is continuous
(b) f is continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(c) f is discontinuous
(d) None of these
(7) If $u=2 x-y, v=x+4 y$, then $J=\frac{\partial(u, v)}{\partial(x, y)}=$ \qquad .
(a) $\frac{1}{9}$
(b) 9
(c) 1
(d) 10
(8) If J is the Jacobian of x and y w.r.t. u and v and J^{\prime} Jacobian of u, v w.r.t. x and y. Then J^{\prime} is :
(a) $\frac{1}{\mathrm{~J}}$
(b) J
(c) -J
(d) J^{2}
(9) $\int_{0}^{1} \int_{1}^{3} x y^{2} d y d x=$
(a) $\frac{12}{3}$
(b) $\frac{13}{3}$
(c) $\frac{14}{3}$
(d) $\frac{15}{3}$
(10) The value $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \mathrm{dxdydz}$ is :
(a) 6
(b) 8
(c) 4
(d) 2
$1 \times 10=10$

UNIT—I

2. (a) Prove that every Cauchy sequence is bounded.
(b) Show that the sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle=\frac{1}{\mathrm{n}+1}+\frac{1}{\mathrm{n}+2}+\ldots \ldots .+\frac{1}{\mathrm{n}+\mathrm{n}}$ is convergent. 3
(c) Evaluate $\lim _{\mathrm{n} \rightarrow \infty} \frac{1+2+3+4+\ldots \ldots+\mathrm{n}}{\mathrm{n}^{2}}$.

OR

3. (p) A real sequence $\left\langle s_{n}\right\rangle$ converges iff for each $\in>0, \exists M \in N$ such that $\left|\mathrm{s}_{\mathrm{m}}-\mathrm{s}_{\mathrm{n}}\right|<\in \quad \forall \mathrm{m}, \mathrm{n} \geq \mathrm{M}$. Prove this.
(q) Prove that every convergent sequence of real numbers is a Cauchy sequence. 3
(r) Prove that limit of sequence if it exists is unique.
4. (a) Test the convergence of series $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)}$ by using integral test.
(b) If the series $\Sigma \mathrm{X}_{\mathrm{n}}$ is convergent then prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{n}}=0$.
(c) Define :
(i) Harmonic series
(ii) Absolutely convergent
(iii) Conditionally convergent.

OR

5. (p) Prove that $\sum \frac{1}{\mathrm{n}^{\mathrm{p}}}$ converges when $\mathrm{p}>1$ and diverges when $\mathrm{p} \leq 1$.
(q) Test the converges of series $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4} \ldots .$.
(r) Test the converges of $\sum\left(\frac{\mathrm{n}}{\mathrm{n}+1}\right)^{\mathrm{n}^{2}}$.

UNIT-III
6. (a) Prove that if limit of function $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ exist then it is unique.
(b) Expand e^{xy} at $(2,1)$ upto $1^{\text {st }}$ three terms.
(c) Using $\in-\delta \operatorname{det}^{n}$ of limit of function prove that $\underset{(x, y) \rightarrow(1,1)}{ }\left(x^{2}+2 y\right)=3$.

OR
7. (p) Prove that if x, y are differentiable functions of u, v and u, v are differentiable functions of r, s, then prove that :

$$
\frac{\partial(x, y)}{\partial(u, v)} \times \frac{\partial(u, v)}{\partial(r, s)}=\frac{\partial(x, y)}{\partial(r, s)}
$$

(q) Obtain the expansion of $f(x, y)=x^{2}-y^{2}+3 x y$ at point $(1,2)$.
(r) Prove that the function $f(x, y)=x+y$ is continuous function $\forall x, y \in R^{2}$.

UNIT-IV

8. (a) If $x=r \cos \theta, y=r \sin \theta$ find $J=\frac{\partial(x, y)}{\partial(\gamma, \theta)}$ and $J^{\prime}=\frac{\partial(\gamma, \theta)}{\partial(x, y)}$ and also prove that $\mathrm{JJ}^{\prime}=1$.
(b) Show that the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither maxima or minima at $(0,0)$.
(c) Find the extremum of $\sin A \cdot \operatorname{Sin} B \cdot \operatorname{Sin} C$ subject to condition $A+B+C=\pi$.

3

OR

9. (p) Find by using Lagrange's method of multiplier the least distance of the origin from plane $x-2 y+2 z=9$.
(q) If $x u=y z, y v=x z, z w=x y$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(r) Find the Maxima and Minima value of function $x^{3}+y^{3}-3 a x y$.
10. (a) Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}} x^{2} d y d x$.
(b) Evaluate by Stoke's theorem $\int_{C}\left(e^{x} d x+2 y d y-d z\right)$, where ' C ' is the curve $x^{2}+y^{2}=4, z=2$.

OR

11. (p) Evaluate by changing the order of integration :

$$
\int_{0}^{2 a} \int_{x^{2} / 4 a}^{3 a-x} f(x, y) d x \cdot d y
$$

(q) Evaluate :

$$
\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \mathrm{dxdydz}
$$

